Wedged in equilateral triangles.

Level 2

In square A B C D ABCD , four congruent equilateral triangles are wedged in to form the inner red square.

Let A s A_{s} be the area of the red square.

If A s A A B C D = α β λ \dfrac{A_{s}}{A_{ABCD}} = \alpha - \beta\sqrt{\lambda} , where α , β \alpha, \beta and λ \lambda are coprime positive integers, find α + β + λ \alpha + \beta + \lambda .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 25, 2020

Let m m be a side of square A B C D ABCD .

Let A e A_{e} be the area of equilateral D F E \triangle{DFE} 4 A e = 4 ( 1 2 ) ( a ) ( 3 2 a ) = 3 a 2 \implies 4A_{e} = 4(\dfrac{1}{2})(a)(\dfrac{\sqrt{3}}{2}a) = \sqrt{3}a^2

Let A I A_{I} be the area of G F D \triangle{GFD}

The height h G F D = ( m a ) sin ( 6 0 ) = 3 2 ( m a ) h_{\triangle{GFD}} = (m - a)\sin(60^{\circ}) = \dfrac{\sqrt{3}}{2}(m - a) \implies

4 A I = 4 ( 1 2 ) ( m a ) 2 ( 3 2 ) = 3 ( m a ) 2 4A_{I} = 4(\dfrac{1}{2})(m - a)^2(\dfrac{\sqrt{3}}{2}) = \sqrt{3}(m - a)^2

Using the law of cosines on G F D \triangle{GFD} with included F G D \angle{FGD} \implies

a 2 = 2 ( m a ) 2 ( 3 2 ) = 3 ( m a ) 2 = 3 a 2 6 m a + 3 m 2 2 a 2 6 m a + 3 m 2 = 0 a^2 = 2(m - a)^2 (\dfrac{3}{2}) = 3(m - a)^2 = 3a^2 -6ma + 3m^2 \implies 2a^2 - 6ma + 3m^2 = 0

a = 3 ± 3 2 m \implies a = \dfrac{3 \pm \sqrt{3}}{2}m

a = 3 + 3 2 m m a = ( 1 + 3 ) m < 0 a = \dfrac{3 + \sqrt{3}}{2}m \implies m - a = -(1 + \sqrt{3})m < 0

a = 3 3 2 m m a = 3 1 2 m a = \dfrac{3 - \sqrt{3}}{2}m \implies m - a = \dfrac{\sqrt{3} - 1}{2}m

\therefore we drop a = 3 + 3 2 m a = \dfrac{3 + \sqrt{3}}{2}m and choose a = 3 3 2 m a = \dfrac{3 - \sqrt{3}}{2}m

4 A e = 3 4 ( 3 3 ) 2 m 2 = 3 3 2 ( 2 3 ) m 2 \implies 4A_{e} = \dfrac{\sqrt{3}}{4}(3 - \sqrt{3})^2 m^2 = \dfrac{3\sqrt{3}}{2}(2 - \sqrt{3}) m^2

and

4 A I = 3 ( m a ) 2 = 3 4 ( 3 1 ) 2 m 2 = 3 2 ( 2 3 ) m 2 4A_{I} = \sqrt{3}(m - a)^2 = \dfrac{\sqrt{3}}{4}(\sqrt{3} - 1)^2 m^2 = \dfrac{\sqrt{3}}{2}(2 - \sqrt{3})m^2

A s = m 2 ( 4 A e + 4 A I ) = ( 1 ( 2 3 ( 2 3 ) ) ) m 2 = \implies A_{s} = m^2 - (4A_{e} + 4A_{I}) = (1 - (2\sqrt{3}(2 - \sqrt{3})))m^2 = ( 1 ( 4 3 6 ) ) m 2 (1 - (4\sqrt{3} - 6))m^2

= ( 7 4 3 ) m 2 = (7 - 4\sqrt{3})m^2

A s A A B C D = ( 7 4 3 ) = α β λ α + β + λ = 14 \implies \dfrac{A_{s}}{A_{\triangle{ABCD}}} = (7 - 4\sqrt{3}) = \alpha - \beta\sqrt{\lambda} \implies \alpha + \beta + \lambda = \boxed{14} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...