Weekly Challenge #1

Geometry Level 2

Let 0 < θ < 4 5 0 ^ \circ < \theta < 45 ^ \circ . Then arrange -

t 1 t_1 = ( t a n θ ) t a n θ (tan \theta) ^ {tan \theta} , t 2 t_2 = ( t a n θ ) c o t θ (tan \theta) ^ {cot \theta} ,

t 3 t_3 = ( c o t θ ) t a n θ (cot \theta) ^ {tan \theta} , t 4 t_4 = ( c o t θ ) c o t θ (cot \theta) ^ {cot \theta}

in decreasing order.

t 2 t_2 > t 1 t_1 > t 3 t_3 > t 4 t_4 t 2 t_2 > t 3 t_3 > t 4 t_4 > t 1 t_1 t 4 t_4 > t 3 t_3 > t 1 t_1 > t 2 t_2 t 4 t_4 > t 1 t_1 > t 3 t_3 > t 2 t_2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Saubhagya Raizada
Mar 13, 2014

If you take theta as 30 degrees, you get tan(theta) as 1/sqrt(3) and cot(theta) as sqrt(3). Plug in the values, compare and solve!

CHEERS!

Ameya Salankar
Mar 12, 2014

For a > 1 a > 1 , the function y = a x y = a^x is an increasing function. For 0 < θ < 4 5 0^\circ < \theta < 45^\circ , cot θ > 1 > tan θ > 0 \cot \theta >1 > \tan \theta > 0 . Thus t 3 < t 4 t_3<t_4 .

For a < 1 a < 1 , the function y = a x y = a^x is an decreasing function. Thus t 1 > t 2 t_1>t_2 .

Again, by cot θ > 1 > tan θ > 0 \cot \theta >1 > \tan \theta > 0 , we have t 1 < 1 < t 3 t_1<1<t_3 .

Hence, t 4 > t 3 > t 1 > t 2 t_4>t_3>t_1>t_2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...