Weighted summing amplifier

Consider the following circuit. R 1 = 1 Ω R_1 = 1\Omega , R 2 = 2 Ω R_2 = 2\Omega , R 3 = 3 Ω R_3 = 3\Omega , and R 4 = 4 Ω R_4 = 4\Omega . The output voltage can be expressed as V o = x V 1 + y V 2 V_o = xV_1 + yV_2 . If x + y = a b x+y = \frac{a}{b} where a a and b b are positive co-prime integers, enter a + b a+b .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Charley Shi
Apr 11, 2021

i 1 = V 1 V 2 R 1 + R 2 i_1 = \frac{V_1-V_2}{R_1+R_2} V + = V = V 1 i 1 R 1 = V 1 ( V 1 V 2 ) R 1 R 1 + R 2 V_+ = V_- = V_1 - i_1R_1 = V_1- \frac{(V_1-V_2)R_1}{R_1+R_2} i 2 = V R 3 i_2 = \frac{V_-}{R_3} V o = i 2 ( R 3 + R 4 ) = V R 3 ( R 3 + R 4 ) = ( V 1 ( V 1 V 2 ) R 1 R 1 + R 2 ) R 3 + R 4 R 3 V_o = i_2(R_3+R_4) = \frac{V_-}{R_3}(R_3+R_4) = \left(V_1- \frac{(V_1-V_2)R_1}{R_1+R_2}\right)\frac{R_3+R_4}{R_3} V 0 = ( V 1 ( R 1 + R 2 ) V 1 R 1 + V 2 R 1 R 1 + R 2 ) ( R 3 + R 4 R 3 ) V_0 = \left(\frac{V_1(R_1+R_2)-V_1R_1+V_2R_1}{R_1+R_2}\right)\left(\frac{R_3+R_4}{R_3}\right) V o = ( V 1 R 2 + V 2 R 1 ) ( R 3 + R 4 R 3 ( R 1 + R 2 ) ) V_o = (V_1R_2 + V_2R_1)\left(\frac{R_3+R_4}{R_3(R_1+R_2)}\right) V o = ( R 2 ( R 3 + R 4 ) R 3 ( R 1 + R 2 ) ) x V 1 + ( R 1 ( R 3 + R 4 ) R 3 ( R 1 + R 2 ) ) y V 2 V_o = \underbrace{\left(\frac{R_2(R_3+R_4)}{R_3(R_1+R_2)}\right)}_x V_1 + \underbrace{\left(\frac{R_1(R_3+R_4)}{R_3(R_1+R_2)}\right)}_y V_2

x = 2 ( 3 + 4 ) 3 ( 1 + 2 ) = 14 9 x = \frac{2(3+4)}{3(1+2)} = \frac{14}{9} y = 1 ( 3 + 4 ) 3 ( 1 + 2 ) = 7 9 y = \frac{1(3+4)}{3(1+2)} = \frac{7}{9} x + y = 2 ( 3 + 4 ) 3 ( 1 + 2 ) = 14 9 + 7 9 = 21 9 = 7 3 x + y = \frac{2(3+4)}{3(1+2)} = \frac{14}{9} + \frac{7}{9} = \frac{21}{9} = \frac{7}{3} Therefore, a = 7 a = 7 and b = 3 b = 3 so a + b = 10 a+ b = \boxed{10} .

Nice solution, Charley! At Purdue's ECE program, we teach our Sophomores the wonderful "Op-Amp Chant"........Oppie the Amp loves his matching voltages (V+ = V-), but ain't got time for current drama (I+ = I- = 0)! Well, at least it still works for me 25 years later :)

tom engelsman - 2 months ago

Considering that OPAMP input currents are 0 0 , we can calculate the voltage at the "+" input using superposition:

V + = R 2 R 1 + R 2 V 1 + R 1 R 1 + R 2 V 2 = 2 3 V 1 + 1 3 V 2 V^+=\dfrac{R_2}{R_1+R_2}V_1 + \dfrac{R_1}{R_1+R_2}V_2 = \dfrac{2}{3}V_1 + \dfrac{1}{3}V_2

The "+" input sees the rest of the circuit as a non-inverting OPAMP configuration, so we can write:

V o = ( 1 + R 4 R 3 ) V + = 7 3 ( 2 3 V 1 + 1 3 V 2 ) = 14 9 V 1 + 7 9 V 2 V_o = (1 + \dfrac{R_4}{R_3})V^+ = \dfrac{7}{3}(\dfrac{2}{3}V_1 + \dfrac{1}{3}V_2) = \dfrac{14}{9}V_1 + \dfrac{7}{9}V_2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...