Weird coefficient

Algebra Level 5

x 3 + 3 x 2 + 9 x 13 = 3 2 x + 543 27 9 \large \sqrt{x^3+3x^2+9x-13}=\sqrt{3-2x}+\frac{\sqrt{543}-\sqrt{27}}{9} Find the sum of all real roots of the equation above. Submit your answer to 2 decimal places.


The answer is 1.33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 10, 2016

x 3 + 3 x 2 + 9 x 13 = 3 2 x + 543 27 9 x 3 + 3 x 2 + 9 x 13 3 2 x = 181 27 1 3 \begin{aligned} \sqrt{x^3+3x^2+9x-13} & = \sqrt{3-2x}+\frac{\sqrt{543}-\sqrt{27}}{9} \\ \sqrt{x^3+3x^2+9x-13} - \sqrt{3-2x} & =\sqrt{\frac {181}{27}}-\sqrt{\frac13} \end{aligned}

Equating the radicals and consider the smaller ones first.

3 2 x = 1 3 3 2 x = 1 3 2 x = 8 3 x = 4 3 \begin{aligned} \sqrt{3-2x} & =\sqrt{\frac13} \\ \implies 3-2x & = \frac13 \\ 2x & = \frac 83 \\ \implies x & = \frac 43 \end{aligned}

Substituting x = 4 3 x = \frac 43 is the first radical,

x 3 + 3 x 2 + 9 x 13 = 64 27 + 3 16 9 + 9 4 3 13 = 64 + 144 + 324 351 27 = 181 27 = R H S \begin{aligned} \sqrt {x^3+3x^2+9x-13} & = \sqrt {\frac {64}{27} +3 \cdot \frac {16}9 + 9 \cdot \frac 43-13} \\ & = \sqrt {\frac {64+144+324-351}{27}} \\ & = \sqrt {\frac {181}{27}} = RHS \end{aligned}

Note that the equation is only valid for 1 x 3 2 1 \le x \le \frac 32 , because x 3 + 3 x 2 + 9 x 13 < 0 x^3+3x^2+9x-13< 0 for x < 1 x < 1 and 3 2 x < 0 3-2x < 0 for x > 3 2 x > \frac 32 . Also note that within x [ 1 , 3 2 ] x \in \left[1, \frac 32\right] , x 3 + 3 x 2 + 9 x 13 x^3+3x^2+9x-13 is continuously increasing and 3 2 x 3-2x , continuously decreasing, therefore, x = 4 3 x = \frac 43 is the only real root and that the sum of real roots is also 4 3 1.33 \frac 43 \approx \boxed{1.33} .

Nice one, exactly how I did it too.

Wei Chen - 4 years, 11 months ago
P C
Jul 10, 2016

Here's my approach. The constrain of x x is x [ 1 ; 3 2 ] x\in [1;\frac{3}{2}] x 3 + 3 x 2 + 9 x 13 = 3 2 x + 543 27 9 \sqrt{x^3+3x^2+9x-13}=\sqrt{3-2x}+\frac{\sqrt{543}-\sqrt{27}}{9} x 3 + 3 x 2 + 9 x 13 543 9 + 27 9 3 2 x = 0 \Leftrightarrow \sqrt{x^3+3x^2+9x-13}-\frac{\sqrt{543}}{9}+\frac{\sqrt{27}}{9}-\sqrt{3-2x}=0 x 3 3 x 2 + 9 x 532 27 x 3 + 3 x 2 + 9 x 13 + 543 9 + 2 x 8 3 3 2 x + 27 9 = 0 \Leftrightarrow\frac{x^3-3x^2+9x-\frac{532}{27}}{\sqrt{x^3+3x^2+9x-13}+\frac{\sqrt{543}}{9}}+\frac{2x-\frac{8}{3}}{\sqrt{3-2x}+\frac{\sqrt{27}}{9}}=0 ( x 4 3 ) ( x 2 + 13 x 3 + 133 9 x 3 + 3 x 2 + 9 x 13 + 543 9 + 2 3 2 x + 27 9 ) = 0 \Leftrightarrow \big(x-\frac{4}{3}\big)\bigg(\frac{x^2+\frac{13x}{3}+\frac{133}{9}}{\sqrt{x^3+3x^2+9x-13}+\frac{\sqrt{543}}{9}}+\frac{2}{\sqrt{3-2x}+\frac{\sqrt{27}}{9}}\bigg)=0 We see that x 2 + 13 x 3 + 133 9 x 3 + 3 x 2 + 9 x 13 + 543 9 + 2 3 2 x + 27 9 > 0 ; x [ 1 ; 3 2 ] \frac{x^2+\frac{13x}{3}+\frac{133}{9}}{\sqrt{x^3+3x^2+9x-13}+\frac{\sqrt{543}}{9}}+\frac{2}{\sqrt{3-2x}+\frac{\sqrt{27}}{9}}>0 ; \forall x\in [1;\frac{3}{2}] , so the only root is x = 4 3 1.33 x=\frac{4}{3}\approx 1.33

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...