Weird equation

Algebra Level 4

{ 1 x + 1 y + z = 4 1 y + 1 z + x = 9 2 1 z + 1 x + y = 36 5 \large \begin{cases} \dfrac{1}{x} + \dfrac{1}{y+z} = 4 \\ \dfrac{1}{y} + \dfrac{1}{z+x} = \dfrac{9}{2} \\ \dfrac{1}{z} + \dfrac{1}{x+y} = \dfrac{36}{5} \end{cases}

Given that x x , y y , and z z satisfy the system of equation above, find 1 x + 1 y + 1 z \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x + y + z x ( y + z ) \frac{x + y + z}{x(y + z)} = 4 .............1

x + y + z y ( x + z ) \frac{x + y + z}{y(x + z)} = 9 2 \frac{9}{2} ...................2

x + y + z z ( x + y ) \frac{x + y + z}{z( x + y )} = 36 5 \frac{36}{5} .................3

so, 4xy + 4xz = 9 2 \frac{9}{2} (xy + yz)

z = x y 8 x 9 y \frac{xy}{8x - 9y}

solving 1 and 3 we get

4xz = y(5x - 9z)

using the value of z we get y = 2 3 \frac{2}{3} x

again if we put the value of z in equation 3 we get

40x^2 - 45y^2 = 36xy( x + y )

as y = 2 3 \frac{2}{3} x

we get x = 1 2 \frac{1}{2}

so y = 2/3

an z = 1/6

so, 1/x + 1/y + 1/z = 2 + 3 + 6

Calvin Lin Staff
Jun 9, 2017

Similar to Omar's, but simplier.

We will use the substitution 1 x = a , 1 y = b , 1 z = c \frac{1}{x} = a, \frac{1}{y } = b, \frac{ 1}{z} = c . (where a b c 0 abc \neq 0 .)
Notice that 1 y + z = 1 y z 1 z + 1 y = b c b + c \frac{1}{y+z} = \frac{ \frac{1}{yz} } { \frac{1}{z} + \frac{1}{y} } = \frac{ bc } { b+c } .
Thus, the first equation is a + b c b + c = 4 a + \frac{ bc} { b+ c } = 4 , or that a b + b c + c a = 4 ( b + c ) ab + bc + ca = 4 ( b + c ) .
Similarly, the second equation is a b + b c + c a = 9 2 ( c + a ) ab + bc + ca = \frac{9}{2} ( c + a) ,
and the third equation is a b + b c + c a = 36 5 ( a + b ) ab + bc + ca = \frac{ 36}{5} ( a+b) .



Solving 4 ( b + c ) = 9 2 ( c + a ) = 36 5 ( a + b ) 4 (b+c) = \frac{ 9}{2} ( c + a ) = \frac{ 36}{5} ( a + b ) , we obtain that 3 a = 2 b = c 3a = 2b = c .
Substituting this into a b + b c + c a = 4 ( b + c ) ab + bc + ca = 4 (b+c) , we get that a = 0 , 2 a = 0 , 2 . Since a 0 a \neq 0 , thus a = 2 a = 2 . Then, b = 3 , c = 6 b = 3, c = 6 .

Hence 1 x + 1 y + 1 z = a + b + c = 2 + 3 + 6 = 11 \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = a + b + c = 2 + 3 + 6 = 11 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...