Weird Expression

Algebra Level 5

a 2 + b 2 + 1 a 2 + b a \large a^2+b^2+\dfrac{1}{a^2}+\dfrac{b}{a}

Given a a and b b are non-zero real numbers , what is the minimum value of the above expression?

Give your answer to 3 decimal places.


The answer is 1.732.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sharky Kesa
Aug 27, 2016

We have

a 2 + b 2 + 1 a 2 + b a = ( b + 1 2 a ) 2 + a 2 + 3 4 a 2 a^2+b^2+\dfrac {1}{a^2} + \dfrac {b}{a} = \left (b + \dfrac {1}{2a} \right )^2 + a^2 + \dfrac {3}{4a^2}

Since ( b + 1 2 a ) 2 0 \left ( b + \frac {1}{2a} \right )^2 \geq 0 , we have

a 2 + b 2 + 1 a 2 + b a a 2 + 3 4 a 2 a^2+b^2+\dfrac {1}{a^2} + \dfrac {b}{a} \geq a^2 + \dfrac {3}{4a^2}

Using AM-GM, we have

a 2 + 3 4 a 2 2 a 2 3 4 a 2 = 3 a^2 + \frac {3}{4a^2} \geq 2 \sqrt{a^2 \dfrac {3}{4a^2}} = \sqrt{3}

Thus, the minimum value of the expression is 3 = 1.732 \sqrt{3}=1.732 . This equality occurs if b = 1 2 a b = - \frac{1}{2a} and a 2 = 3 4 a 2 a^2=\frac {3}{4a^2} , so a = ± 3 4 4 a=\pm \sqrt[4]{\frac{3}{4}} and b = 1 2 4 3 4 b=\mp \frac {1}{2}\sqrt[4]{\frac{4}{3}} .

How is a^2 = 3/4a^2 in the last sentence?

Brian Sun - 4 years, 9 months ago

Log in to reply

Equality in AM-GM occurs only if all the elements are equal.

Sharky Kesa - 4 years, 9 months ago
James Pohadi
Aug 27, 2016

x = a 2 + b 2 + 1 a 2 + b a = b 2 + 1 a b + a 2 + 1 a 2 x=a^{2}+b^{2}+\dfrac{1}{a^2}+\dfrac{b}{a}=b^{2}+\dfrac{1}{a}b+a^{2}+\dfrac{1}{a^2}

The minimum value of x x happen when b = 1 a 2 × 1 = 1 2 a b=-\dfrac{\frac{1}{a}}{2 \times{1}}=-\dfrac{1}{2a}

b = 1 2 a x = ( 1 2 a ) 2 + 1 a . ( 1 2 a ) + a 2 + 1 a 2 x = 1 4 a 2 1 2 a 2 + a 2 + 1 a 2 x = a 2 + 3 4 a 2 \begin{aligned} b=-\dfrac{1}{2a} \implies x&=(-\dfrac{1}{2a})^{2}+\dfrac{1}{a}.(-\dfrac{1}{2a})+a^{2}+\dfrac{1}{a^2} \\ x&=\dfrac{1}{4a^2}-\dfrac{1}{2a^2}+a^{2}+\dfrac{1}{a^2} \\ x&=a^{2}+\dfrac{3}{4a^2} \end{aligned}

By using A M G M AM \geq GM , we have

a 2 + 3 4 a 2 2 a 2 3 4 a 2 a 2 + 3 4 a 2 3 x 3 x 1.732 \begin{aligned} \dfrac{a^2 +\frac {3}{4a^2}}{2} &\geq \sqrt{a^2 \dfrac {3}{4a^2}} \\ a^2 + \frac {3}{4a^2} &\geq \sqrt{3} \\ x &\geq \sqrt{3} \\ x &\geq 1.732 \end{aligned}

Then, the minimum value of x x is 1.732 1.732

Zee Ell
Aug 30, 2016

We can solve this question without using the AM-GM inequality:

a 2 + b 2 + 1 a 2 + b a = ( a 2 3 + 3 4 a 2 ) + ( b 2 + b a + 1 4 a 2 ) + 3 = a^2 + b^2 + \frac {1}{a^2} + \frac {b}{a} = (a^2 - \sqrt {3} + \frac {3}{4a^2}) + (b^2 + \frac {b}{a} + \frac {1}{4a^2}) + \sqrt {3} =

= ( a 3 2 a ) 2 + ( b + 1 2 a ) 2 + 3 = (a - \frac { \sqrt {3} }{2a})^2 + (b + \frac {1}{2a})^2 + \sqrt {3}

Now, what we have is a sum of two squares and a constant. A square is minimal (on its own), when its value is 0.

In this case, we can make both squares 0 at the same time:

a 3 2 a = 0 a - \frac { \sqrt{3} }{2a} = 0

a 2 = 3 2 a^2 = \frac { \sqrt{3} }{2}

a = ± 3 4 4 a = ± \sqrt [4]{ \frac {3}{4}}

b + 1 2 a = 0 b + \frac {1}{2a} = 0

b = 1 2 a b = - \frac {1}{2a}

b = ± 1 2 4 3 4 b = ± \frac {1}{2} \sqrt [4]{ \frac {4}{3}}

Hence, the minimum value of our weird expression is our constant:

3 = 1.732 ( 3 d. p. ) \boxed { \sqrt{3} = 1.732 \text { ( 3 d. p. ) } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...