Determine the least real number ξ such that the inequality
∣ ∣ a b ( a 2 − b 2 ) + b c ( b 2 − c 2 ) + c a ( c 2 − a 2 ) ∣ ∣ ⩽ ξ ( a 2 + b 2 + c 2 ) 2
holds for all real numbers a , b and c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
We first consider the cubic polynomial P ( t ) = t b ( t 2 − b 2 ) + b c ( b 2 − c 2 ) + c t ( c 2 − t 2 ) . It is easy to check that P ( b ) = P ( c ) = P ( − b − c ) = 0 , and therefore P ( t ) = ( b − c ) ( t − b ) ( t − c ) ( t + b + c ) , since the cubic coefficient is b − c . The LHS of the proposed inequality can therefore be written in the form ∣ ∣ a b ( a 2 − b 2 ) + b c ( b 2 − c 2 ) + c a ( c 2 − a 2 ) ∣ ∣ = ∣ P ( a ) ∣ = ∣ ( b − c ) ( a − b ) ( a − c ) ( a + b + c ) ∣ . The problem comes down to finding the smallest number ξ that satisfied the inequality ∣ ( b − c ) ( a − b ) ( a − c ) ( a + b + c ) ∣ ⩽ ξ ⋅ ( a 2 + b 2 + c 2 ) 2 . ( 1 ) Note that this expression is symmetric, and we can therefore assume a ⩽ b ⩽ c without loss of generality. With this assumption, ∣ ( a − b ) ( b − c ) ∣ = ( b − a ) ( c − b ) ⩽ ( 2 ( b − a ) + ( c − b ) ) 2 = 4 ( c − a ) 2 , ( 2 ) with equality iff b − a = c − b , i.e. 2 b = a + c . Also ( 2 ( c − b ) + ( b − a ) ) 2 ⩽ 2 ( c − b ) 2 + ( b − a ) 2 , or equivalently, 3 ( c − a ) 2 ⩽ 2 ⋅ [ ( b − a ) 2 + ( c − b ) 2 + ( c − a ) 2 ] , ( 3 ) again with equality only for 2 b = a + c . From ( 2 ) and ( 3 ) we get \eqalign{ &\qquad |(b-c)(a-b)(a-c)(a+b+c)| \\ & \leqslant\ \ \dfrac14\cdot\left|(c-a)^3(a+b+c)\right|\\ &= \ \ \dfrac14\cdot\sqrt{(c-a)^6(a+b+c)^2}\\ &\leqslant \ \ \dfrac14\cdot\sqrt{\left( \dfrac{2\left[ (b-a)^2+(c-b)^2+(c-a)^2 \right]}3 \right)^3\cdot(a+b+c)^2}\\ &=\ \ \dfrac{\sqrt{2}}2\cdot\left(\sqrt[4]{ \left( \dfrac{(b-a)^2+(c-d)^2+(c-a)^2}3 \right)^3\cdot(a+b+c)^2 }\right)^2. } By AM-GM inequality this estimate continues as follows: \eqalign{ &\qquad |(b-c)(a-b)(a-c)(a+b+c)|\\ &\leqslant \ \ \dfrac{\sqrt{2}}2\cdot\left( \dfrac{(b-a)^2+(c-b)^2+(c-a)^2+(a+b+c)^2} 4 \right)^2\\ &= \ \ \dfrac{9\sqrt{2}}{32}\cdot(a^2+b^2+c^2)^2. } We see that the inequality ( 1 ) is satisfied for ξ = 3 2 9 2 , with equality iff 2 b = a + c and 3 ( b − a ) 2 + ( c − b ) 2 + ( c − a ) 2 = ( a + b + c ) 2 . Plugging b = ( a + c ) / 2 into the last equation we bring it to the equivalent form 2 ( c − a ) 2 = 9 ( a + c ) 2 . The conditions for equality can now be restated as 2 b = a + c and ( c − a ) 2 = 1 8 b 2 . Setting b = 1 yiels a = 1 − 2 3 2 and c = 1 + 2 3 2 . We see that ξ = 3 2 9 2 is indeed the smallest constant satisfying the inequality, with inequality for any triple ( a , b , c ) proportional to ( 1 − 2 3 2 , 1 , 1 + 2 3 2 ) , up to permutation.