⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ I 1 = ∫ 0 1 ( 1 − ( 1 − x 3 ) 2 ) 3 x 2 d x I 2 = ∫ 0 1 ( 1 − ( 1 − x 3 ) 2 ) 3 + 1 x 2 d x
For I 1 and I 2 as defined above, find 1 0 1 ( I 2 I 1 − 2 2 3 − 1 + 5 1 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let us define the integral I = ∫ 0 1 ( 1 − ( 1 − x 3 ) p ) q x 2 d x
Now, we try to solve the integral in terms of p and q .
First substitute in x 3 = t ⟹ x 2 d x = 3 d t with limits ∫ 0 1 → ∫ 0 1 to get
I = 3 1 ∫ 0 1 ( 1 − ( 1 − t ) p ) q d t
Now substituting ( 1 − t ) = u ⟹ d t = − d u with limits ∫ 0 1 → ∫ 1 0 to get
I = − 3 1 ∫ 1 0 ( 1 − u p ) q d u = 3 1 ∫ 0 1 ( 1 − u p ) q d u
Let u p = y ⟹ p u p − 1 d u = d y ⟹ d u = p u p − 1 d y ⟹ d u = p y p 1 − 1 d y with limits ∫ 0 1 → ∫ 0 1 to get
I = 3 p 1 ∫ 0 1 y p 1 − 1 ( 1 − y ) q d y
This corresponds to the Beta function given by
B ( m , n ) = ∫ 0 1 y m − 1 ( 1 − y ) n − 1 d y
and hence
I = 3 p 1 B ( p 1 , q + 1 )
On comparison with the integrals given in the problem, we have
I 1 = 3 2 1 B ( 2 1 , 3 + 1 ) I 2 = 3 2 1 B ( 2 1 , 3 + 2 )
We shall use the following identities to get the required result
( 1 ) B ( m , n ) = Γ ( m + n ) Γ ( m ) Γ ( n ) ( 2 ) Γ ( s + 1 ) = s Γ ( s )
where Γ ( ⋅ ) denotes the Gamma function.
Therefore, we have
I 2 I 1 = B ( 2 1 , 3 + 2 ) B ( 2 1 , 3 + 1 ) = Γ ( ( 1 / 2 ) + 3 + 2 ) Γ ( 1 / 2 ) Γ ( 3 + 2 ) Γ ( ( 1 / 2 ) + 3 + 1 ) Γ ( 1 / 2 ) Γ ( 3 + 1 ) = Γ ( ( 1 / 2 ) + 3 + 1 ) Γ ( 3 + 1 ) ⋅ Γ ( 3 + 2 ) Γ ( ( 1 / 2 ) + 3 + 2 ) = Γ ( ( 1 / 2 ) + 3 + 1 ) Γ ( 3 + 1 ) ⋅ ( 3 + 1 ) Γ ( 3 + 1 ) ( ( 1 / 2 ) + 3 + 1 ) Γ ( ( 1 / 2 ) + 3 + 1 ) = 3 + 1 ( 2 1 + 3 + 1 ) = 1 + 2 ( 3 + 1 ) 1 = 1 + 2 2 3 − 1
The answer evaluates to be
1 0 1 ( 1 + 2 2 3 − 1 − 2 2 3 − 1 + 5 1 ) = 1 0 1 ⋅ 5 6 = 2 5 3 = 0 . 1 2