WEIRD INTEGRATION

Calculus Level 5

If ( x 2010 + x 804 + x 402 ) ( 2 x 1608 + 5 x 402 + 10 ) 1 402 d x = 1 10 k ( 2 x 2010 + 5 x 804 + 10 x 402 ) k 402 + C \int { \left( { x }^{ 2010 }+{ x }^{ 804 }+{ x }^{ 402 } \right) } ({ {2 x }^{ 1608 }+{5 x }^{ 402 }+10 })^{ \frac { 1 }{ 402 } }dx=\frac { 1 }{ 10k } ({ { 2x }^{ 2010 }+{ 5x }^{ 804 }+{ 10x }^{ 402 }) }^{ \frac { k }{ 402 } }+C .Find sum of digits of k?

For more fantastic problems, click here


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pranjal Jain
Feb 19, 2015

Overrated! Well, I did by Dimensional analysis.

Biggest power of x x inside the integral is 2010 + 1608 402 = 2014 2010+\dfrac{1608}{402}=2014 . Now d x dx also has the dimensions of x x . Therefore, its 2015 2015 on LHS.

Biggest power of x x in LHS is 2010 × k 402 = 5 k 2010×\dfrac{k}{402}=5k

So, 5 k = 2015 k = 403 5k=2015\Rightarrow k=403 . Sum of digits = 4 + 0 + 3 = 7 =4+0+3=7

This is definitely over-rated!!

Parth Lohomi - 6 years, 3 months ago
Hasan Kassim
Feb 20, 2015

I = ( x 2010 + x 804 + x 402 ) ( 2 x 1608 + 5 x 402 + 10 ) 1 402 d x \displaystyle I=\int (x^{2010}+x^{804}+x^{402})(2x^{1608}+5x^{402}+10)^{\frac{1}{402}} dx

= x ( x 2009 + x 803 + x 401 ) ( 2 x 1608 + 5 x 402 + 10 ) 1 402 d x \displaystyle = \int x(x^{2009}+x^{803}+x^{401})(2x^{1608}+5x^{402}+10)^{\frac{1}{402}} dx

= ( x 2009 + x 803 + x 401 ) ( x 402 ) 1 402 ( 2 x 1608 + 5 x 402 + 10 ) 1 402 d x \displaystyle = \int (x^{2009}+x^{803}+x^{401})(x^{402})^{\frac{1}{402}} (2x^{1608}+5x^{402}+10)^{\frac{1}{402}} dx

= ( x 2009 + x 803 + x 401 ) ( 2 x 2010 + 5 x 804 + 10 x 402 ) 1 402 d x \displaystyle = \int (x^{2009}+x^{803}+x^{401})(2x^{2010}+5x^{804}+10x^{402})^{\frac{1}{402}} dx

Set u = 2 x 2010 + 5 x 804 + 10 x 402 , d u = 4020 ( x 2009 + x 803 + x 401 ) u=2x^{2010}+5x^{804}+10x^{402} , du= 4020(x^{2009}+x^{803}+x^{401})

= > I = 1 4020 u 1 402 d u = 1 4020 402 403 u 403 402 + C \displaystyle => I = \frac{1}{4020} \int u^{\frac{1}{402}} du = \frac{1}{4020} \frac{402}{403} u^{\frac{403}{402}} +C

= 1 4030 ( 2 x 2010 + 5 x 804 + 10 x 402 ) 403 402 + C \displaystyle = \frac{1}{4030} ( 2x^{2010}+5x^{804}+10x^{402})^{\frac{403}{402}} + C

Therefore: k = 403 \boxed{k=403} .

excellent!

Adarsh Kumar - 6 years, 3 months ago
Priyesh Pandey
May 11, 2015

differentiate on Both sides and compare like terms

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...