Weird Recursion-2

Calculus Level 5

A recurrence relation is given by b 0 = 7 2 b_{ 0 }=\dfrac { 7 }{ 2 } and b n = 8 7 b n 1 b_{ n }=8-\dfrac { 7 }{ b_{ n-1 } } .

If b n = A + B C n A + B C n 1 b_{ n }=\dfrac { A+B\cdot{ C }^{ n } }{ A+B\cdot{ C }^{ n-1 } } and lim n b n = F \displaystyle \lim _{ n\to \infty }{ b_{ n } } = F , where A , B A,B and C C are positive integers and gcd ( A , B ) = 1 \gcd(A,B)=1 then find A + B + C + F A + B + C + F .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Adnan Roshid
Sep 14, 2016

Let , b n = a n a n 1 { b }_{ n }=\frac { { a }_{ n } }{ { a }_{ n-1 } }

Then the given recurrence relation becomes, a n 8 a n 1 7 a n 2 = 0. { a }_{ n }-8{ a }_{ n-1 }-7{ a }_{ n-2 }=0 .

The characteristic equation for this linear second order recurrence relation is,

x 2 8 x 7 = 0 { x }^{ 2 }-8x-7=0

x = 1 , 7 \Rightarrow x = 1 , 7 .

so ,

a n = A + B . 7 n { a }_{ n }=A+B.{ 7 }^{ n }

putting n=0 and n=1 and then solving for A and B we get,

A = 7 a 0 a 1 6 A=\frac { 7{ a }_{ 0 }-{ a }_{ 1 } }{ 6 }

B = a 1 a 0 6 B=\frac { { a }_{ 1 }-{ a }_{ 0 } }{ 6 }

Therefore,

a n = 7 a 0 a 1 6 + a 1 a 0 6 . 7 n { a }_{ n }=\frac { 7{ a }_{ 0 }-{ a }_{ 1 } }{ 6 } +\frac { { a }_{ 1 }-{ a }_{ 0 } }{ 6 } .{ 7 }^{ n } ------ ( i )

Now,

b 1 = a 1 a 0 a 1 = b 1 . a 0 { b }_{ 1 }=\frac { { a }_{ 1 } }{ { a }_{ 0 } } \\ \Rightarrow { a }_{ 1 }=b_{ 1 }.{ a }_{ 0 }

so equation (i) becomes,

a n = a 0 6 { 7 b 1 + ( b 1 1 ) . 7 n } { a }_{ n }=\frac { { a }_{ 0 } }{ 6 } \left\{ 7-b_{ 1 }+(b_{ 1 }-1).{ 7 }^{ n } \right\} ------ (ii)

replace n n by n 1 n-1 ,

a n 1 = a 0 6 { 7 b 1 + ( b 1 1 ) . 7 n 1 } { a }_{ n-1 }=\frac { { a }_{ 0 } }{ 6 } \left\{ 7-b_{ 1 }+(b_{ 1 }-1).{ 7 }^{ n-1 } \right\} ------- (iii)

calculating b 1 = 6 b_{ 1 }=6

and ,

( i i ) ( i i i ) a n a n 1 = b n = 1 + 5 7 n 1 + 5 7 n 1 \frac { (ii) }{ (iii) } \Rightarrow \frac { { a }_{ n } }{ a_{ n-1 } } =b_{ n }=\frac { 1+5\cdot { 7 }^{ n } }{ 1+5\cdot { 7 }^{ n-1 } }

as question format A+B+C= 1 + 5 + 7 = 13

and , lim n b n = 7 = F \lim _{ n\rightarrow \infty }{ b_{ n } } = 7 = F

finally A + B + C + F = 13 + 7 = 20 A+B+C+F=13+7=\boxed { 20 }

The value of B/A is 5, and B and A can be of any real value unless specified that A is 1.

Siva Bathula - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...