Weird Systems

x x and y y are the natural numbers satisfying following system of equations.

y 3 + 3 y = x 3 + 3 x 2 + 266 y^{3}+3y = x^{3}+3x^{2}+ 266

x 2 + y 2 = 8 x + 8 y + 2 x^{2}+y^{2} = 8x+8y+2

Find the sum of the digits of the product of x x and y y .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 14, 2015

From x 2 + y 2 = 8 x + 8 y + 2 x^2 + y^2 = 8x+8y+2

x 2 8 x + 16 + y 2 8 y + 16 = 2 + 16 + 16 ( x 4 ) 2 + ( y 4 ) 2 = 34 ( y 4 ) 2 = 34 ( x 4 ) 2 For natural numbers x and y , = { 34 0 2 = 34 not perfect square, rejected 34 1 2 = 33 not perfect square, rejected 34 2 2 = 30 not perfect square, rejected 34 3 2 = 25 x = 7 , y = 9 34 4 2 = 18 not perfect square, rejected 34 5 2 = 9 x = 9 , y = 7 \begin{aligned} \Rightarrow x^2 - 8x + 16 + y^2 - 8y + 16 & = 2+16 +16 \\ (x-4)^2 + (y-4)^2 & = 34 \\ \Rightarrow (y-4)^2 & = 34 - (x-4)^2 \quad \quad \small \color{#3D99F6}{\text{For natural numbers } x \text{ and }y,} \\ & = \begin{cases} 34 - 0^2 = 34 & \small \color{#D61F06}{\text{not perfect square, rejected}} \\ 34 - 1^2 = 33 & \small \color{#D61F06}{\text{not perfect square, rejected}} \\ 34 - 2^2 = 30 & \small \color{#D61F06}{\text{not perfect square, rejected}} \\ 34 - 3^2 = 25 & \Rightarrow \color{#3D99F6}{x = 7, \quad y = 9} \\ 34 - 4^2 = 18 & \small \color{#D61F06}{\text{not perfect square, rejected}} \\ 34 - 5^2 = 9 & \Rightarrow \color{#3D99F6}{x = 9, \quad y = 7} \end{cases} \end{aligned}

Substituting the values of x x and y y in y 3 + 3 y = x 3 + 3 x 2 + 266 y^3+3y = x^3 + 3x^2 + 266 ,

x = 7 y = 9 9 3 + 3 ( 9 ) = 7 3 + 3 ( 7 2 ) + 266 756 = 756 accepted x = 9 y = 7 7 3 + 3 ( 7 ) = 9 3 + 3 ( 9 2 ) + 266 364 1238 rejected \begin{aligned} x=7 \quad y=9 \quad \Rightarrow 9^3 + 3(9) & = 7^3 + 3(7^2) + 266 \\ \Rightarrow \color{#3D99F6}{756} & \color{#3D99F6}{= 756 \quad \text{accepted}} \\ x=9 \quad y=7 \quad \Rightarrow 7^3 + 3(7) & = 9^3 + 3(9^2) + 266 \\ \Rightarrow \color{#D61F06}{364} & \color{#D61F06}{\ne 1238 \quad \text{rejected}} \end{aligned}

Since x y = 7 × 9 = 63 xy = 7\times 9 = 63 , and its sum of digits is 9 \boxed{9} .

Dhananjay Singh
Nov 28, 2015

the second equation is sufficient enough for the answer , only 2 points either (7,9) or (9,7) are the points with natural coordinates that satisfy the equation of circle , hence product 63 and sum is 9.

correct approach...

A Former Brilliant Member - 5 years, 6 months ago

Did the same way....:)

Samarth Agarwal - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...