Weirdratic Function

Level 2

The equation

( x 3 x ) 2 + ( x 3 x ) 6 = 0 (x - \frac{3}{x})^{2} + (x - \frac{3}{x}) - 6 = 0 ,

has roots a , b and c ± d e \frac{c \pm \sqrt{d}}{e} . Find the value of a + b + c + d + e |a| + |b| + |c| + |d| + |e| .


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

( x 3 x ) = y (x-\frac{3}{x}) = y y 2 + y 6 = 0 y^2 + y - 6 = 0 y = 3 or 2 y = -3 \; \text{or} \; 2 x 3 x = 3 or x 3 x = 2 x - \frac{3}{x} = -3 \; \text{or} \; x - \frac{3}{x} = 2 x 2 + 3 x 3 = 0 or x 2 2 x 3 = 0 x^2 +3x - 3 = 0 \; \text{or} \; x^2 -2x - 3 = 0 x = 3 ± 21 2 or x = 1 or 3 x = \frac{-3 \pm \sqrt{21}}{2} \; \text{or} \; x = -1 \; \text{or} \; 3 a = 1 , b = 3 , c = 3 , d = 21 , e = 2 a=-1, b=3, c=-3, d=21, e=2 a + b + c + d + e = 30. \boxed{|a|+|b|+|c|+|d|+|e|=30.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...