Welcome 2016! Part 20

Algebra Level 4

1 1 + 2 + 1 1 + 2 + 3 + + 1 1 + 2 + + 20 \large \dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\cdots+\dfrac{1}{1+2+\cdots+20}

If the value of the expression above is equal to m n \dfrac mn , where m m and n n are coprime positive integers, find the value of m + n m+n .


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akhil Bansal
Dec 26, 2015

Given expression equals,
= i = 2 20 1 n = 1 i n \large = \displaystyle \sum_{i=2}^{20} \dfrac{1}{\sum_{n=1}^i n } = i = 2 20 2 i ( i + 1 ) \large = \sum_{i=2}^{20} \dfrac{2}{i(i+1)} It's a telescoping series , = 2 [ i = 2 20 ( 1 i 1 i + 1 ) ] \large = 2\left[ \displaystyle \sum_{i=2}^{20}\left( \dfrac{1}{i} - \dfrac{1}{i+1}\right) \right] = 2 [ 1 2 1 3 + 1 3 1 21 ] \large = 2\left[ \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \ldots -\dfrac{1}{21}\right] 2 [ 1 2 1 21 ] = 19 21 \large \Rightarrow 2\left[\dfrac{1}{2} - \dfrac{1}{21}\right] = \color{#3D99F6}{ \dfrac{19}{21}}


Note : Sum of n consecutive natural numbers = n ( n + 1 ) 2 \dfrac{n(n+1)}{2}

Moderator note:

Good observation of the telescoping series.

Going a step further, if you take the upper limit to be x x instead of 20 20 , you can generalize it:

2 n = 2 x 1 n 1 n + 1 = x 1 x + 1 , x 2 2\sum _{ n=2 }^{ x }{ \frac { 1 }{ n } -\frac { 1 }{ n+1 } =\frac { x-1 }{ x+1 } ,\quad x\ge 2 }

Andrew Tawfeek - 5 years, 1 month ago
Rohit Udaiwal
Dec 26, 2015

First recall that sum of fisrt n n natural numbers is given by n ( n + 1 ) 2 \dfrac{n(n+1)}{2} .So sum of 1 + 2 = 2 ( 2 + 1 ) 2 , 1 + 2 + 3 = 3 ( 3 + 1 ) 2 \color{#20A900}{1+2=\dfrac{2(2+1)}{2}},\color{#3D99F6}{1+2+3=\dfrac{3(3+1)}{2}} and so on.Our expression then becomes: 1 2 3 2 + 1 3 4 2 + + 1 20 21 2 = 2 2 3 + 2 3 4 + + 2 20 21 = 2 ( 1 2 3 + 1 3 4 + + 1 20 21 ) = 2 ( 1 2 1 3 + 1 3 1 4 + + 1 20 1 21 ) = 2 ( 1 2 1 21 ) = 2 19 42 = 19 21 \dfrac{1}{\color{#20A900}{\frac{2\cdot3}{2}}}+\dfrac{1}{\color{#3D99F6}{\frac{3\cdot4}{2}}}+\ldots+\dfrac{1}{\color{magenta}{\frac{20\cdot21}{2}}}=\color{#20A900}{\dfrac{2}{2\cdot3}}+\color{#3D99F6}{\dfrac{2}{3\cdot4}}+\ldots+\color{magenta}{\dfrac{2}{20\cdot21}} \\ =2\left(\dfrac{1}{\color{#20A900}{2\cdot3}}+\dfrac{1}{\color{#3D99F6}{3\cdot4}}+\ldots+\dfrac{1}{\color{magenta}{20\cdot21}}\right) \\ =2\left(\color{#20A900}{\dfrac{1}{2}}-\color{#20A900}{\dfrac{1}{3}}+\color{#3D99F6}{\dfrac{1}{3}}-\color{#3D99F6}{\dfrac{1}{4}}+\ldots+\color{magenta}{\dfrac{1}{20}}-\color{magenta}{\dfrac{1}{21}}\right) \\ =2\left(\dfrac{1}{2}-\dfrac{1}{21}\right)=2\cdot\dfrac{19}{42} \\ =\boxed{\dfrac{19}{21}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...