Welcome 2016! Part 30

Geometry Level 3

A B C \triangle ABC is a right-angled triangle in which C = 9 0 \angle C = 90^{\circ} . An inscribed circle touches the hypotenuse at D D . If A D × D B = 11 AD \times DB=11 , then find the area of A B C \triangle ABC .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sahil Bansal
Jan 6, 2016

L e t A D = x , s o D B = 11 / x N o w , s i n c e a r e a o f t r i a n g l e = r s , w h e r e r i s t h e i n r a d i u s a n d s i s t h e s e m i p e r i m e t e r . H e r e , s = ( A B + B C + C A ) / 2 s = { ( x + 11 x ) + ( 11 x + r ) + ( x + r ) } / 2 s = x + 11 x + r = r x + 11 r x + r 2 e q u a t i o n 1 N o w , a p p l y i n g P y t h a g o r a s t h e o r e m ( r + x ) 2 + ( r + 11 x ) 2 = ( 11 x + x ) 2 2 r x + 22 r x + 2 r 2 = 22 r x + 11 r x + r 2 = 11 H e n c e f r o m e q u a t i o n 1 , a r e a o f t r i a n g l e = 11 s q u a r e u n i t s . Let\quad AD=x\quad ,\quad so\quad DB=11/x\\ \\ Now,\quad since\quad area\quad of\quad triangle\quad \triangle =rs,\quad where\quad r\quad is\quad the\quad inradius\quad and\quad s\quad is\quad the\quad semi-perimeter.\\ \\ Here,\quad s\quad =\quad (AB+BC+CA)/2\\ \\ \Rightarrow s=\{ (x+\frac { 11 }{ x } )+(\frac { 11 }{ x } +r)+(x+r)\} /2\\ \\ \Rightarrow s=x+\frac { 11 }{ x } +r\\ \\ \therefore \quad \triangle =rx+\frac { 11r }{ x } +{ r }^{ 2 }\quad \longmapsto equation\quad 1\\ \\ Now,applying\quad Pythagoras\quad theorem\quad \\ \\ { (r+x) }^{ 2 }+{ (r+\frac { 11 }{ x } ) }^{ 2 }{ =(\frac { 11 }{ x } +x) }^{ 2 }\\ \\ \Rightarrow 2rx+\frac { 22r }{ x } +2{ r }^{ 2 }=22\\ \\ \Rightarrow rx+\frac { 11r }{ x } +{ r }^{ 2 }=11\\ \\ Hence\quad from\quad equation\quad 1,\quad area\quad of\quad triangle\quad \triangle =11\quad square\quad units.\\ \\

Anand Iyer
Jan 6, 2016

Let P be the center of the inscribed circle. Draw in A P AP and P B PB as well as the perpendiculars from the center of the circle to the sides. We know [ A B C ] = r s = r ( r + x + y ) [ABC]=rs=r(r+x+y) where x y = 11 xy=11 . We can also find the area in a different way by just doing base multiplied by height divided by 2. This gives us ( r + x ) ( r + y ) 2 \frac{(r+x)(r+y)}{2} as the area. Setting the two equal gives r 2 + r x + r y x y = 0 r^2+rx+ry-xy=0 . This can be rewritten as ( r + x ) ( r + y ) = 2 x y (r+x)(r+y)=2xy or ( r + x ) ( r + y ) 2 = x y \frac{(r+x)(r+y)}{2}=xy . Note the LHS is just the area of the triangle while the RHS is 11, thus, our answer is 11.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...