Welcome 2016! Part 31

n = 0 49 ( 1 ) n ( 99 2 n ) \large \displaystyle \sum_{n=0}^{49}(-1)^n {99 \choose 2n}

If the above expression is written in the form of a b \displaystyle a^b , where a a and b b are integers, find the positive value of a + b a+b .


Inspiration .


The answer is 47.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We note that: ( 1 + x ) n = k = 0 n ( n k ) x k When x = i ( 1 + i ) n = 1 + ( n 1 ) i + ( n 2 ) i 2 + ( n 3 ) i 3 + ( n 4 ) i 4 + ( n 5 ) i 5 + . . . + ( n n ) i n = 1 + ( n 1 ) i ( n 2 ) ( n 3 ) i + ( n 4 ) + ( n 5 ) i + . . . + ( n n ) i n Therefore, n = 0 49 ( 99 2 n ) = { ( 1 + i ) 99 } As ( 1 + i ) 2 = 2 i = { ( 2 i ) 49 ( 1 + i ) } = { 2 49 i ( 1 + i ) } = { 2 49 ( i 1 ) } = 2 49 \begin{aligned} \text{We note that:} \quad (1+x)^n & = \sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix} x^k \\ \text{When }x = i \Rightarrow (1+i)^n & = 1 + \begin{pmatrix} n \\ 1 \end{pmatrix} i + \begin{pmatrix} n \\ 2 \end{pmatrix} i^2 + \begin{pmatrix} n \\ 3 \end{pmatrix} i^3 + \begin{pmatrix} n \\ 4 \end{pmatrix} i^4 + \begin{pmatrix} n \\ 5 \end{pmatrix} i^5 +...+ \begin{pmatrix} n \\ n \end{pmatrix} i^n \\ & = 1 + \begin{pmatrix} n \\ 1 \end{pmatrix} i - \begin{pmatrix} n \\ 2 \end{pmatrix} - \begin{pmatrix} n \\ 3 \end{pmatrix} i + \begin{pmatrix} n \\ 4 \end{pmatrix} + \begin{pmatrix} n \\ 5 \end{pmatrix} i +...+ \begin{pmatrix} n \\ n \end{pmatrix} i^n \\ \text{Therefore,} \quad \sum_{n=0}^{49} \begin{pmatrix} 99 \\ 2n \end{pmatrix} & = \Re \left \{ (1+i)^{99} \right \} \quad \quad \color{#3D99F6}{\text{As }(1+i)^2 = 2i} \\ & = \Re \left \{ (2i)^{49}(1+i) \right \} \\ & = \Re \left \{ 2^{49}i(1+i) \right \} \\ & = \Re \left \{ 2^{49}(i-1) \right \} \\ & = - 2^{49} \end{aligned}

a + b = 2 + 49 = 47 \Rightarrow a + b = -2+49 = \boxed{47}

Alan Yan
Jan 7, 2016

( 1 + i ) 99 = [ ( 99 0 ) ( 99 2 ) + ( 99 4 ) . . . ] + i [ ( 99 1 ) ( 99 3 ) + . . . ] (1+i)^{99} = \left[ {99 \choose 0} - {99 \choose 2} + {99 \choose 4} - ... \right ] + i \left [ {99 \choose 1} - {99 \choose 3} + ... \right ]

Thus we have ( 1 + i ) 99 = 2 49 + i 2 49 (1+i)^{99} = -2^{49} + i2^{49}

Comparing real components, we have that the desired expression is ( 2 ) 49 (-2)^{49} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...