Tangent Untangented

Geometry Level 2

Compute in degrees :

arctan ( tan 6 5 2 tan 4 0 ) . \large \arctan( \tan 65^{\circ}- 2 \tan 40^{\circ}).


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishabh Jain
Jan 8, 2016

tan 65 = tan ( 45 + 20 ) = 1 + t a n 20 1 t a n 20 \color{#3D99F6}{ \tan 65 = \tan (45+20) = \frac{1 + tan20}{1-tan20}} a n d , 2 tan 40 = 2 ( 2 tan 20 ) 1 tan 2 20 \color{#3D99F6}{ and,\space 2 \tan 40 = \frac{2(2 \tan 20)}{1- \tan^2 20}} tan 65 2 tan 40 = ( 1 + t a n 20 ) 2 4 tan 20 1 tan 2 20 \tan65 - 2\tan40=\frac{(1+tan20)^2-4\tan20}{1-\tan^2 20} ( 1 tan 20 ) 2 ( 1 t a n 20 ) ( 1 + t a n 20 ) = 1 tan 20 1 + tan 20 = t a n ( 45 20 ) = t a n 25 \frac{(1-\tan20)^2}{(1-tan20)(1+tan20)}=\frac{1- \tan20}{1+\tan20}=tan(45-20)=tan25 Hence tan 1 ( t a n 25 ) = 25 \tan^{-1}(tan25)=\huge\color{#69047E}{25}

= arctan { 2.1445 2 ( 0.8390 ) } = arctan { 2.1445 1.6781 } = arctan { 0.4663 } = 25 =\arctan { \{ 2.1445-2(0.8390)\} } =\arctan { \{ 2.1445-1.6781\} } =\arctan { \{ 0.4663\} } =25

Akhil Garg - 5 years, 3 months ago
Amed Lolo
Feb 22, 2016

tan65=tan(90-25)=sin(90-25)÷cos(90-25). =cos 25÷sin25 ,,,,tan40=sin(90-50)÷ cos(90-50) .=cos50÷sin50=cos2(25)÷sin2(25). cos25\sin25-2cos2(25)\2cos25sin25. ={1÷sin25}×(cos25- cos2(25)\cos25). cos2(25)\cos25=2cos^2(25)-1\cos25=2cos25-1\cos25, {1\si25}×(cos25-2cos25+(1\cos25) =1\sin25×(1\cos25-cos25)={1\sin25}×{sin^2 (25)\cos25}=sin25÷cos25=tan25 so arctan(tan25)=25#####

65 - 40 = 25

Pulkit Gupta
Jan 8, 2016

Write

tan 65 = tan ( 45 + 20 ) = 1 + t a n 20 1 t a n 20 \large \tan 65 = \tan (45+20) = \frac{1 + tan20}{1-tan20} ,

2 tan 40 = 2 ( 2 tan 20 ) 1 tan 2 20 \large 2 \tan 40 = \frac{2(2 \tan 20)}{1- \tan^2 20}

& simplify the expression to obtain ( 1 tan 20 ) 2 1 tan 2 20 \large \frac{(1-\tan 20)^2}{1- \tan^2 20} = ( 1 tan 20 ) 1 + tan 20 \large \frac{(1-\tan 20)}{1+ \tan 20} = tan ( 45 20 ) \large \tan (45-20) = tan 25 \large \tan 25

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...