Compute in degrees :
arctan ( tan 6 5 ∘ − 2 tan 4 0 ∘ ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
= arctan { 2 . 1 4 4 5 − 2 ( 0 . 8 3 9 0 ) } = arctan { 2 . 1 4 4 5 − 1 . 6 7 8 1 } = arctan { 0 . 4 6 6 3 } = 2 5
tan65=tan(90-25)=sin(90-25)÷cos(90-25). =cos 25÷sin25 ,,,,tan40=sin(90-50)÷ cos(90-50) .=cos50÷sin50=cos2(25)÷sin2(25). cos25\sin25-2cos2(25)\2cos25sin25. ={1÷sin25}×(cos25- cos2(25)\cos25). cos2(25)\cos25=2cos^2(25)-1\cos25=2cos25-1\cos25, {1\si25}×(cos25-2cos25+(1\cos25) =1\sin25×(1\cos25-cos25)={1\sin25}×{sin^2 (25)\cos25}=sin25÷cos25=tan25 so arctan(tan25)=25#####
Write
tan 6 5 = tan ( 4 5 + 2 0 ) = 1 − t a n 2 0 1 + t a n 2 0 ,
2 tan 4 0 = 1 − tan 2 2 0 2 ( 2 tan 2 0 )
& simplify the expression to obtain 1 − tan 2 2 0 ( 1 − tan 2 0 ) 2 = 1 + tan 2 0 ( 1 − tan 2 0 ) = tan ( 4 5 − 2 0 ) = tan 2 5
Problem Loading...
Note Loading...
Set Loading...
tan 6 5 = tan ( 4 5 + 2 0 ) = 1 − t a n 2 0 1 + t a n 2 0 a n d , 2 tan 4 0 = 1 − tan 2 2 0 2 ( 2 tan 2 0 ) tan 6 5 − 2 tan 4 0 = 1 − tan 2 2 0 ( 1 + t a n 2 0 ) 2 − 4 tan 2 0 ( 1 − t a n 2 0 ) ( 1 + t a n 2 0 ) ( 1 − tan 2 0 ) 2 = 1 + tan 2 0 1 − tan 2 0 = t a n ( 4 5 − 2 0 ) = t a n 2 5 Hence tan − 1 ( t a n 2 5 ) = 2 5