Welcome 2016! Part 5

Algebra Level 3

n = 2 1023 log n ( n + 1 ) = ? \large \displaystyle \prod_{n=2}^{1023} \log_{n}(n+1) = \, ? \


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Akhil Bansal
Dec 11, 2015

n = 2 1023 log n ( n + 1 ) \large \displaystyle \prod_{n=2}^{1023} \log_{n}(n+1)

= log 2 3 × log 3 4 × × log 1023 1024 = \large \log_{2}3\times \log_{3}4 \times \ldots \times \log_{1023}1024 Using logarithm property , log b a = ln a ln b \log_b a = \dfrac{\ln a}{\ln b}
= ln 3 ln 2 × ln 4 ln 3 × × ln 1024 ln 1023 = \large \dfrac{\ln 3}{\ln 2} \times \dfrac{\ln 4}{\ln 3} \times \ldots \times \dfrac{\ln 1024}{\ln 1023} = ln 1024 ln 2 = log 2 1024 = 10 = \large \dfrac{\ln 1024}{\ln 2}= \log_2 1024= 10

Anish Harsha
Dec 11, 2015

n = 2 1023 log n ( n + 1 ) \large \displaystyle \prod_{n=2}^{1023} \log_{n}(n+1)

= ( log 2 3 ) ( log 3 4 ) ( log 1023 1024 \large (\log_{2}3)(\log_{3}4) \ldots (\log_{1023}1024 )

By the chain rule of logarithms ( log a b × log b c = log a c ) (\large \log_{a}b \times \log_{b}c = \log_{a}c)

= log 2 1024 = 10 \large \log_{2}1024 = 10

Aareyan Manzoor
Dec 11, 2015

write as n = 2 1023 ( ln ( n + 1 ) ln ( n ) ) \prod_{n=2}^{1023} \left(\dfrac{\ln(n+1)}{\ln(n)}\right) this easily telescopes to 1 ln ( 2 ) ln ( 1023 + 1 ) = log 2 ( 1024 ) = 10 \dfrac{1}{\ln(2)}\ln(1023+1)=\log_2 (1024)=10

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...