Welcome 2017!

Geometry Level 4

Let α , β , γ \alpha, \beta, \gamma be positive numbers satisfying α + β + γ = π 2 \alpha + \beta + \gamma = \frac \pi 2 . And denote A , B , C A,B,C that satisfies

{ A = tan α tan β + 5 B = tan β tan γ + 5 C = tan γ tan α + 5 \large\ \begin{cases} A=\tan { \alpha } \tan { \beta } +5 \\ B = \tan { \beta } \tan { \gamma } + 5 \\ C = \tan { \gamma } \tan { \alpha } + 5 \end{cases} .

Find maximum value of A + B + C \sqrt { A } +\sqrt { B } +\sqrt { C } .

Give your answer to 3 decimal places.


The answer is 6.928.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jan 6, 2017

tan ( α + β + γ ) = tan π 2 \tan(\alpha+\beta+\gamma)=\tan\frac{\pi}2 cyc tan α cyc tan α 1 cyc tan α tan β = tan π 2 \implies \dfrac{\displaystyle\sum_{\text{cyc}}\tan \alpha-\displaystyle\prod_{\text{cyc}}\tan \alpha}{1-\displaystyle\sum_{\text{cyc}}\tan \alpha\tan \beta}=\tan\frac{\pi}2\to \infty

For this to hold true: cyc tan α tan β = 1 \color{cyan}{\displaystyle\sum_{\text{cyc}}\tan \alpha\tan \beta=1} .

Now from adding the given conditions:

A + B + C = cyc tan α tan β + 15 = 16 \color{#D61F06}{A+B+C}= \color{cyan}{\displaystyle\sum_{\text{cyc}}\tan \alpha\tan \beta}\color{#333333}{+15=}\color{#D61F06}{16}

Using Cauchy Shwarz inequality ,

A + B + C ( A + B + C ) ( 1 + 1 + 1 ) = 48 6.982 \sqrt A+\sqrt B+\sqrt C\le \sqrt{(\color{#D61F06}{A+B+C})\color{#333333}{(1+1+1)}}=\sqrt{48}\approx{6.982}


Equality occurs when : A = B = C OR α = β = γ = π 6 \small{A=B=C\text{ OR }\alpha=\beta=\gamma=\dfrac{\pi}6}

@Rishabh Cool ,

Please break the summation in second steps. I cannot understand it in your form.

Also avoid too much summations.

Priyanshu Mishra - 4 years, 5 months ago

Log in to reply

Summation is just a convenient form of writing long expressions

Rishabh Jain - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...