Any Classical Inequalities Approach?

Geometry Level 4

Let a a and b b be real numbers satisfying a 2 + 2 b 2 = 2 a^2 +2b^2 = 2 . Find the sum of the minimum and maximum possible values of P = a + 3 b 2 P = a+3b-2 .


The answer is -4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Son Nguyen
Oct 10, 2016

Relevant wiki: Trigonometric R method

Thus , a 2 + 2 b 2 = 2 a^2+2b^2=2 and then rewrite it we got :

a 2 2 + b 2 = 1 \frac{a^2}{2}+b^2=1

Let a 2 = sin x ; b = cos x \frac{a}{\sqrt{2}}=\sin x ; b=\cos x

So P = 2 sin x + 3 cos x 2 P=\sqrt{2}\sin x+3\cos x-2

By R method , the equation has the solution when : ( P + 2 ) 2 ( 2 ) 2 + 3 2 = 11 (P+2)^2 \leq \sqrt{(\sqrt2)^2 + 3^2} = \sqrt{11}

2 11 P 2 + 11 -2-\sqrt{11}\leq P\leq -2+\sqrt{11}

So the sum is ( 2 11 ) + ( 2 + 11 ) = 4 (-2-\sqrt{11}) + (-2+\sqrt{11}) = \boxed{-4} .

Josh Banister
Oct 12, 2016

If ( a , b ) (a,b) satisfy a 2 + 2 b 2 = 2 a^2 + 2b^2 = 2 then so do ( a , b ) (-a,-b) as ( a ) 2 + 2 ( b ) 2 = a 2 + 2 b 2 = 2 (-a)^2 + 2(-b)^2 = a^2 + 2b^2 = 2 . Let ( a , b ) (a,b) be the values which makes P P at its maximum. Let ( x , y ) (x,y) be values that satisfy a 2 + 2 b 2 = 2 a^2 + 2b^2 = 2 and let P = x + 3 y 2 P' = x+3y - 2 . Since ( a , b ) (a,b) is gives the maximum value of P P , we must have P P a + 3 b x + 3 y x + 3 ( y ) a + 3 ( b ) x + 3 ( y ) 2 a + 3 ( b ) 2 \begin{aligned} P &\geq P' \\ a + 3b &\geq x+3y \\-x + 3(-y) &\geq -a + 3(-b) \\ -x + 3(-y) - 2 &\geq -a + 3(-b) - 2 \end{aligned} . This means that for any ( x , y ) (-x,-y) , x + 3 ( y ) 2 -x +3(-y) - 2 will always be greater than a + 3 ( b ) 2 -a + 3(-b) - 2 (with equality holding when ( x , y ) = ( a , b ) (x,y) = (a,b) ). Thus when the ( a , b ) (a,b) gives the maximum value of P P , ( a , b ) (-a,-b) will give the minimum value. The sum of P P for these two values are a + 3 b 2 + ( a ) + 3 ( b ) 2 = 4 a + 3b - 2 + (-a) + 3(-b) - 2 = \boxed{-4}

Manuel Kahayon
Oct 13, 2016

Relevant wiki: Cauchy-Schwarz Inequality

One more solution wouldn't hurt. By the cauchy-schwarz inequality,

( 1 2 ) + ( 3 2 ) 2 ) ( ( a ) 2 + ( 2 b ) 2 ) ( a + ( 2 ) ( 3 2 ) ( b ) ) 2 (1^2) +(\frac{3}{\sqrt{2}})^2)((a)^2+(\sqrt{2}b)^2) \geq (a+(\sqrt{2})(\frac{3}{\sqrt{2}})(b))^2 , giving us

11 ( a + 3 b ) 2 11 \geq (a+3b)^2

This implies

11 a + 3 b 11 \sqrt{11} \geq a+3b \geq -\sqrt{11} .

Subtracting 2 2 from both sides gives us

11 2 a + 3 b 2 11 2 \sqrt{11} -2 \geq a+3b-2 \geq -\sqrt{11}-2 .

Therefore the maximum is 11 2 \sqrt{11}-2 , minimum is 11 2 -\sqrt{11}-2 . Our answer is then 11 2 11 2 = 4 \sqrt{11}-2-\sqrt{11}-2 = \boxed{-4} .

Arjen Vreugdenhil
Oct 14, 2016

Shortcut based on symmetry

If we replace ( a , b ) (a,b) by ( a , b ) (-a,-b) , the value of a 2 + 2 b 2 = 2 a^2 + 2b^2 = 2 remains the same, while the value of P P is replaced by 4 P -4-P . If ( a , b ) (a^\star,b^\star) gives a maximum then ( a , b ) (-a^\star,-b^\star) gives the minimum, and P m i n = 4 P m a x P_{min} = -4-P_{max} . Thus P m i n + P m a x = 4 . P_{min} + P_{max} = \boxed{-4}. without knowing any further details!

Suppose ( a , b ) (a,b) are such that P m a x = a + 3 b 2 P_{max} = a + 3b - 2 is maximal under the condition a 2 + 2 b 2 = 2 a^2 + 2b^2 = 2 . I claim that the minimum value of P P under the same condition is P m i n = ( a ) + 3 ( b ) 2 = 4 P m a x P_{min} = (-a) + 3(-b)-2 = -4-P_{max} .

Proof by contradiction: Suppose that instead there exist ( c , d ) (c,d) where P P reaches a minimum value P m i n = c + 3 d 2 < 4 P m a x P_{min} = c + 3d - 2 < -4-P_{max} , with c 2 + 2 d 2 = 2 c^2 + 2d^2 = 2 . Then ( c ) 2 + 2 ( d ) 2 = c 2 + 2 d 2 = 2 ; (-c)^2 + 2(-d)^2 = c^2 + 2d^2 = 2; and ( c ) + 3 ( d ) 2 = 4 P m i n > P m a x (-c) + 3(-d)-2 = -4-P_{min} > P_{max} , but this is impossible because we assumed that under the given condition P m a x P_{max} was the maximum.

Arjen Vreugdenhil - 4 years, 8 months ago

Sir can you please explain why (-a,-b) gives a minima if (a,b) gives maxima?

Thanks.

Harsh Shrivastava - 4 years, 8 months ago
Chew-Seong Cheong
Oct 12, 2016

Relevant wiki: Trigonometry R method

Similar solution as @MS HT's, different presentation.

a 2 + 2 b 2 = 2 Divide both sides by 2 a 2 2 + b 2 = 1 Using the identity sin 2 θ + cos 2 θ = 1 \begin{aligned} a^2 + 2b^2 & = 2 & \small \color{#3D99F6}{\text{Divide both sides by }2} \\ \frac {a^2}2 + b^2 & = 1 & \small \color{#3D99F6}{\text{Using the identity }\sin^2 \theta + \cos^2 \theta = 1} \end{aligned}

{ a 2 = sin θ a = 2 sin θ b = cos θ \implies \begin{cases} \dfrac a{\sqrt 2} = \sin \theta & \implies a = \sqrt 2 \sin \theta \\ b = \cos \theta \end{cases}

Then, we have:

P = a + 3 b 2 = 2 sin θ + 3 cos θ 2 = 11 ( 2 11 sin θ + 3 11 cos θ ) 2 = 11 sin ( θ + tan 1 3 2 ) 2 \begin{aligned} P & = a+3b-2 \\ & = \sqrt 2 \sin \theta + 3 \cos \theta - 2 \\ & = \sqrt{11}\left(\sqrt {\frac {2}{11}}\sin \theta + \frac 3{\sqrt{11}} \cos \theta \right) - 2 \\ & = \sqrt{11} \color{#3D99F6}{\sin \left(\theta + \tan^{-1} \frac 3{\sqrt 2} \right)} - 2 \end{aligned}

We note that P P is maximum and minimum when sin ( θ + tan 1 3 2 ) \color{#3D99F6}{\sin \left(\theta + \tan^{-1} \frac 3{\sqrt 2} \right)} is maximum = 1 =1 and minimum = 1 =-1 respectively. Therefore, P m a x = 11 2 P_{max} = \sqrt{11} - 2 and P m i n = 11 2 P_{min} = -\sqrt{11} - 2 , and P m a x + P m i n = 4 P_{max} + P_{min} = \boxed{-4} .

Harsh Shrivastava
Oct 13, 2016

Natural approach to this problem would be trigonometric substitution , but just for sake of variety, here's another method.

We have to find minimum and maximum value of P P

From given constraint, a 2 = 2 ( 1 b 2 ) a^2 = 2(1-b^2)

Also, ( P 3 b + 2 ) 2 = a 2 (P -3b+2)^2 = a^2

Therefore, ( P 3 b + 2 ) 2 = 2 ( 1 b 2 ) (P-3b+2)^2 =2(1-b^2) .

Rearranging a bit, we get 11 b 2 6 b ( P + 2 ) + P 2 + 4 P + 2 = 0 11b^2 -6b(P+2) +P^2 +4P +2 =0

Let us consider the above equation as a quadratic in b b .

Since b R b \in R , the discriminant of the quadratic equation 0 \ge0

( 6 ( P + 2 ) ) 2 4 ( 11 ) ( P 2 + 4 P + 2 ) 0 \implies (-6(P+2))^2 -4(11)(P^2 + 4P +2) \ge 0

2 11 P 2 + 11 \boxed{\implies -2-\sqrt{11}\leq P\leq -2+\sqrt{11}}

Therefore final answer is 4 -4 .

Satyam Tripathi
Oct 13, 2016

Put a= cos and b =sin

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...