Solving Many Equations At Once

Algebra Level 4

x 1 + x 2 + x 3 + + x 1007 = 201 4 2 x 1 x 1 + 1 = x 2 x 2 + 3 = x 3 x 3 + 5 = = x 1007 x 1007 + 2013 x_1 + x_2 + x_3 + \ldots + x_{1007} = 2014^2 \\ \frac {x_1}{x_1 + 1} = \frac {x_2}{x_2 + 3} = \frac {x_3}{x_3 + 5} = \ldots = \frac {x_{1007}}{x_{1007} + 2013}

Real numbers x 1 , x 2 , x 3 , . . . , x 1007 x_{1}, x_{2}, x_{3}, ..., x_{1007} satisfy the conditions above. Find the value of x 253 x_{253} .


The answer is 2020.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Mahdi Al-kawaz
Apr 20, 2014

Let A = x 1 x 1 + 1 = x 2 x 2 + 3 = . . . = x 1007 x 1007 + 2013 = x 1 + x 2 + x 3 + . . . + x 1007 x 1 + x 2 + x 3 + . . . + x 1007 + 1 + 3 + 5 + . . . + 2013 A=\frac {x_{1}}{x_{1}+1}=\frac {x_{2}}{x_{2}+3}=...=\frac {x_{1007}}{x_{1007}+2013}=\frac {x_{1}+x_{2}+x_{3}+...+x_{1007}}{x_{1}+x_{2}+x_{3}+...+x_{1007}+1+3+5+...+2013} .

You can find that 1 + 3 + 5... + 2013 = ( 1007 ) 2 1+3+5...+2013=(1007)^{2}

and x 1 + x 2 + x 3 + . . . + x 1007 = ( 2014 ) 2 = 4 ( 1007 ) 2 x_{1}+x_{2}+x_{3}+...+x_{1007}=(2014)^{2}=4(1007)^{2} .

A = 4 ( 1007 ) 2 4 ( 1007 ) 2 + ( 1007 ) 2 = 4 5 \Rightarrow A=\frac {4(1007)^{2}}{4(1007)^{2}+(1007)^{2}}=\frac {4}{5} .

Since A = x 253 x 253 + 505 = 4 5 A=\frac{x_{253}}{x_{253}+505}=\frac {4}{5}

x 253 = 2020 \Rightarrow x_{253}=\boxed {2020} .

Nice.

Adarsh Kumar - 7 years, 1 month ago
Ariel Gershon
Apr 28, 2014

Let a = x k x k + 2 k 1 a = \frac{x_{k}}{x_{k} + 2k - 1} for 1 k 1007 1 \le k \le 1007 .

Solving for x k x_{k} , we get that x k = ( 2 k 1 ) a 1 a x_{k} = (2k-1) \frac{a}{1-a}

Therefore, 201 4 2 = k = 1 1007 x k = a 1 a k = 1 1007 ( 2 k 1 ) 2014^{2} = \sum_{k=1}^{1007} x_{k} = \frac{a}{1-a} \sum_{k=1}^{1007} (2k-1)

Now the sum of the first 1007 odd numbers is just 100 7 2 1007^{2} , so we have: 201 4 2 = a 1 a 100 7 2 2014^{2} = \frac{a}{1-a} * 1007^{2}

Thus 4 = a 1 a 4 = \frac{a}{1-a}

Hence, from the formula above, we have: x k = ( 2 k 1 ) a 1 a = 8 k 4 x_{k} = (2k-1) \frac{a}{1-a} = 8k - 4

Therefore, x 253 = 2020 x_{253} = 2020

I did the same

Lutfar Milu - 7 years, 1 month ago
Adrian Neacșu
Apr 28, 2014

The simplest way to solve it is to inverse all the fractions from the second relation.

Then subtract one. And you will get.

1 x 1 = 3 x 2 = . . . = 2 k 1 x k \frac {1}{{x}_{1}}=\frac {3}{{x}_{2}}=...=\frac {2k-1}{{x}_{k}}

Then equate it with 1 n \frac {1}{n} and you'll get that x k = n ( 2 k 1 ) {x}_{k} = n(2k - 1)

The rest is a first degree equation we we plug in the first equation.

Ujjwal Rane
Dec 11, 2014

Invert all the equal ratios given in (2) and subtract 1 from them, which gives x 2 = 3 x 1 x_{2} = 3 x_{1} ; x 3 = 5 x 1 ; . . . x n = ( 2 n 1 ) x 1 x_{3} = 5 x_{1}; . . . x_{n} = (2n-1) x_{1}

So the sum in (1) can be written as x 1 ( 1 + 3 + 5 + . . . + 2013 ) = x 1 ( 1007 ) 2 = 201 4 2 x_{1}\left(1+3+5+...+2013\right) = x_{1}(1007)^2 = 2014^2 Hence x 1 = 4 x_{1} = 4 and x 253 = 4 × ( 253 × 2 1 ) = 2020 x_{253} = 4 \times (253 \times 2 - 1) = \boxed{2020}

Kowshik Das
Apr 28, 2014

we can see, x1+x2+....+x1007=(2014)^2 or, x1+x2+....+x1007=(1007 * 2)^2 in this way we can write, x1+x2+....+x253=(253 * 2)^2 = 256036 in same way, x1+x2+....+x252=(252 * 2)^2 = 254016 now, x253 = (x1+x2+....+x253) - (x1+x2+....+x252) =256036 - 254016 =2020 in this solution u don't need the other equation

Rajeshwara Rao
Apr 27, 2014

we can find all values of x2 and other terms upto x1007 in terms of x1 by equating and getting it as 3x1,5x1,......,2013x1 (Xk=(2k-1)x1) .substituting in 1st eqn we get x1 (1007^2)=2014^2. therfore x1=4. from the value of x1 we know that x253=(505 * x1)=505 4=2020

i did the same .. :D

Ramesh Goenka - 7 years, 1 month ago

We note that

x 1 x 1 + 1 = x n x n + ( 2 n 1 ) where n N 1007 x 1 x n + ( 2 n 1 ) x 1 = x 1 x n + x n x n = ( 2 n 1 ) x 1 \begin{aligned} \frac {x_1}{x_1+1} & = \frac {x_n}{x_n+(2n-1)} & \small \color{#3D99F6} \text{where } n \in \mathbb N \le 1007 \\ x_1x_n + (2n-1)x_1 & = x_1x_n+x_n \\ \implies x_n & = (2n-1)x_1 \end{aligned}

Therefore, we have:

x 1 + x 2 + x 3 + + x 1007 = 201 4 2 x 1 ( 1 + 3 + 5 + + 2013 ) = 201 4 2 1007 ( 1 + 2013 ) 2 x 1 = 201 4 2 100 7 2 x 1 = 201 4 2 x 1 = 4 \begin{aligned} x_1 + x_2+x_3 + \cdots + x_{1007} & = 2014^2 \\ x_1(1+3+5+\cdots+2013) & = 2014^2 \\ \frac {1007(1+2013)}2x_1 & = 2014^2 \\ 1007^2 x_1 & = 2014^2 \\ \implies x_1 & = 4\end{aligned}

And that x 253 = ( 2 253 1 ) x 1 = 505 4 = 2020 x_{253} = (2\cdot 253-1)x_1 = 505 \cdot 4 = \boxed{2020} .

Rajendra Misra
Apr 28, 2014

x1/(x1 +1) = x2/(x2 +3)

or 1/( 1+1/x1) = 1/(1 + 3/x2)

or x2 = 3*x1

Similarly we ca prove x3 = 5 x1, x4 = 7 x1 ........., x1007 = 2013*x1 so x1 + x2 + x3 + x4 +.................. + x1007

= x1 + 3 x1 + 5 x1 + 7*x1 + ................................ + 2013 * x1 ( Arith. series)

= x1 * 1007 * ( 1 + 2013) / 2 which is = 2014 * 2014 (given)

implies x1 = 4

Because xn = ( 2*n - 1 ) * x1

so x253 = ( 2 * 253 - 1) * 4 = 2020

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...