Well, a quadrilateral inside a quadrilateral

Geometry Level 3

A B C D ABCD is a parallelogram. M , N , P , Q M, \ N, \ P, \ Q are the incenters of A O B , B O C , C O D , D O A \triangle {AOB}, \triangle {BOC}, \triangle {COD}, \triangle {DOA} . What kind of quadrilateral is M N P Q MNPQ ?

Choose the most specific and correct answer.


This is part of the series: " It's easy, believe me! "

Kite. Rectangle. Parallelogram Rhombus.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

O M is angle bisector B O M = A O M E q . 1 O Q is angle bisector D O Q = A O Q E q . 2 adding both equation we get, B O M + D O Q = A O M + A O Q = M O Q B O M + D O Q + M O Q = 2 M O Q 2 M O Q = 18 0 M O Q = 9 0 . M P N Q Diagonals of quadrilateral M N P Q intersect at 9 0 . Statement 1 OM \text{is angle bisector} \implies \angle BOM = \angle AOM \quad \cdots Eq. 1 \\ OQ \text{ is angle bisector} \implies \angle DOQ = \angle AOQ \quad \cdots Eq . 2 \\ \text{adding both equation we get, } \\ \implies \angle BOM + \angle DOQ = \angle AOM + \angle AOQ = \angle MOQ \\ \implies \angle BOM + \angle DOQ + \angle MOQ = 2\angle MOQ \\ \implies 2\angle MOQ = 180^{\circ} \\ \implies \angle MOQ = 90^{\circ}. \\ \implies MP \bot NQ \\ \\ \text{Diagonals of quadrilateral } MNPQ \text{ intersect at } 90^{\circ}. \quad \cdots \textbf{Statement 1}

Δ A O D and Δ C O B are congruent [ A D = C B , A O = O C and D O = O B ] O Q = O N [ Q and N are corresponding in-centres of the triangles ] Similarly O M = O P Diagonals of quadrilateral M N P Q bisect each other. Statement 2 \Delta AOD \text{ and } \Delta COB \text{ are congruent } \Bigg[ \because AD = CB , AO = OC \text{ and } DO = OB \Bigg] \\ \implies OQ = ON \quad\bigg[ \because Q \text{ and } N \text{ are corresponding in-centres of the triangles }\bigg] \\ \text{ Similarly } OM = OP \\ \text{ Diagonals of quadrilateral } MNPQ \text{ bisect each other. } \cdots \textbf{Statement 2}

Combining both the statements, Diagonals of quadrilateral M N P Q bisect each other at 9 0 . and this is the definition of rhombus . M N P Q is a rhombus . \text{Combining both the statements, } \\ \textbf{Diagonals of quadrilateral } MNPQ \textbf{ bisect each other at } 90^{\circ}. \\ \text{ and this is the definition of } \textbf{rhombus}. \\ \implies MNPQ \text{ is a } \textbf{rhombus}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...