Well, How Do I Simplify It?

Geometry Level 4

If sin θ = 3 sin ( θ + 2 β ) \sin\theta =3\sin(\theta +2\beta) , then what is the value of tan ( θ + β ) + 2 tan β \tan(\theta +\beta)+2\tan\beta ?

0 -1 None of these 1 3 4 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sravanth C.
Aug 14, 2016

sin θ sin ( θ + 2 β ) = 2 sin ( θ + 2 β ) 2 sin ( θ ( θ + 2 β ) 2 ) cos ( θ + ( θ + 2 β ) 2 ) = 2 sin ( θ + 2 β ) Transformation Formula sin β cos ( θ + β ) = sin ( θ + β + β ) sin β cos ( θ + β ) = sin ( θ + β ) cos β + cos ( θ + β ) sin β sin β = tan ( θ + β ) cos β + sin β Dividing by cos tan ( θ + β ) + 2 tan β = 0 Dividing by sin \begin{aligned} \sin\theta-\sin(\theta +2\beta)&=2\sin(\theta +2\beta)&\\ 2\sin\left(\dfrac{\theta -(\theta+2\beta)}{2}\right)\cos\left(\dfrac{\theta +(\theta+2\beta)}{2}\right)&=2\sin(\theta+2\beta)&\text{Transformation Formula}\\ -\sin\beta\cos(\theta +\beta)&=\sin(\theta +\beta +\beta)&\\ -\sin\beta\cos(\theta +\beta)&=\sin(\theta +\beta)\cos\beta+\cos(\theta +\beta)\sin\beta&\\ -\sin\beta&=\tan(\theta+\beta)\cos\beta +\sin\beta&\text{Dividing by cos}\\ \tan(\theta +\beta)+2\tan\beta&=0&\text{Dividing by sin}\\ \end{aligned}

Of course this isn't a solution, but anybody could just assume that the answer is the same for all θ , β \theta, \beta which satisfy the given equation. Therefore you could just have θ , β = 0 \theta, \beta=0 and get 0 as the answer.

Wen Z - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...