Well, I know which one is the smallest

Algebra Level 1

Which of the following numbers is the largest?

55 5 5 555^5 5 5 55 55^{55} 5 555 5^{555} 5555 5555

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
Jan 18, 2017

Let's compare them all to powers of 5 \displaystyle 5 .

5555 < 5 6 = 15625 \displaystyle 5555 < 5^6 = 15625

55 5 5 < 62 5 5 = ( 5 4 ) 5 = 5 20 \displaystyle 555^5 < 625^5 = (5^4)^5 = 5^{20}

5 555 = 5 555 \displaystyle 5^{555} = 5^{555}

5 5 55 < 12 5 55 = ( 5 3 ) 55 = 5 165 \displaystyle 55^{55} < 125^{55} = (5^3)^{55} = 5^{165}

Put simply:

5555 < 5 6 \displaystyle 5555 < 5^6

55 5 5 < 5 20 \displaystyle 555^5 < 5^{20}

5 555 = 5 555 \displaystyle 5^{555} = 5^{555}

5 5 55 < 5 165 \displaystyle 55^{55} < 5^{165}

From these observations, clearly 5 555 \boldsymbol {5^{555}} is the largest.

Prokash Shakkhar
Aug 22, 2017

As we don't know which one is greater, first assume that the greater number is found among 5 555 5^{555} & 5 5 55 55^{55} .. So, let's check! 5 555 ? 5 5 55 5^{555} ? 55^{55} .. ( 555 log 5 5 ) ? ( 55 log 5 55 ) \rightarrow (555*\log_5{5}) ? (55*\log_5{55}) 555 > 136.94 \rightarrow 555 > 136.94 So, 5 555 > 5 5 55 5^{555} > 55^{55} ... Now check for 5 555 5^{555} & 55 5 5 555^5 ....

5 555 ? 55 5 5 5^{555} ? 555^{5} ( 555 log 5 5 ) ? ( 5 log 5 555 \rightarrow (555*\log_5{5}) ? (5\log_5{555} 555 > 19.63 \rightarrow 555> 19.63 So, 5 555 > 55 5 5 5^{555}>555^{5} Now it is clear that \boxed{\color\red{5^{555}}} is the largest among the given numbers...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...