Compute r = 1 ∑ ∞ ( 2 r ) ! 2 2 r − 1 ( − 1 ) r .
Give your answer to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
e 2 x = 1 + 2 x + 2 ! 2 2 x 2 + 3 ! 2 3 x 3 + 4 ! 2 4 x 4 + ⋯
⇒ 2 e 2 x = 2 1 + x + 2 ! 2 1 x 2 + 3 ! 2 2 x 3 + 4 ! 2 3 x 4 + ⋯
⇒ 2 e 2 i − 1 = i − 2 ! 2 1 − 3 ! 2 2 i + 4 ! 2 3 + ⋯
Notice that the sum we seek is:
ℜ ( 2 e 2 i − 1 ) = ℜ ( 2 cos ( 2 ) + i sin ( 2 ) − 1 ) = ℜ ( 2 i 2 sin ( 1 ) cos ( 1 ) − 2 sin 2 ( 1 ) ) = ℜ ( − sin 2 ( 1 ) + i sin ( 1 ) cos ( 1 ) ) = − sin 2 ( 1 )
Nice Solution. An alternative approach would be the following (well, technically, its the same solution, but anyways)
cos ( x ) = 1 − 2 ! x 2 + 4 ! x 4 − …
cos ( 2 x ) = 1 − 2 ! 2 2 x 2 + 4 ! 2 4 x 4 − …
1 + cos ( 2 x ) = 2 − 2 ! 2 2 x 2 + 4 ! 2 4 x 4 − …
2 1 + cos ( 2 x ) = 1 − 2 ! 2 x 2 + 4 ! 2 3 x 4 − …
Substitute x = 1 to get,
2 1 + cos 2 = 1 + ( − 2 ! 2 + 4 ! 2 3 − … )
Hence, we have the required sum as,
− 2 ! 2 + 4 ! 2 3 − 6 ! 2 5 + … = ( 2 1 + cos 2 ) − 1 = − 0 . 7 0 8
Problem Loading...
Note Loading...
Set Loading...
cos ( x ) = 1 − 2 ! x 2 + 4 ! x 4 − …
cos ( 2 x ) = 1 − 2 ! 2 2 x 2 + 4 ! 2 4 x 4 − …
1 + cos ( 2 x ) = 2 − 2 ! 2 2 x 2 + 4 ! 2 4 x 4 − …
2 1 + cos ( 2 x ) = 1 − 2 ! 2 x 2 + 4 ! 2 3 x 4 − …
Substitute x = 1 to get,
2 1 + cos 2 = 1 + ( − 2 ! 2 + 4 ! 2 3 − … )
Hence, we have the required sum as,
− 2 ! 2 + 4 ! 2 3 − 6 ! 2 5 + … = ( 2 1 + cos 2 ) − 1 = − 0 . 7 0 8