How high can it go?

Algebra Level 4

Let x x and y y be real numbers. Find the maximum value of x y x-y if 2 ( x 2 + y 2 ) = x + y 2(x^2+y^2)=x+y


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

By completing squares, the given equation can be written as

x 2 x 2 + y 2 y 2 = 0 ( x 1 4 ) 2 + ( y 1 4 ) 2 = 1 8 x^{2} - \dfrac{x}{2} + y^{2} - \dfrac{y}{2} = 0 \Longrightarrow \left(x - \dfrac{1}{4}\right)^{2} + \left(y - \dfrac{1}{4}\right)^{2} = \dfrac{1}{8} ,

which describes a circle with center ( 1 4 , 1 4 ) \left(\dfrac{1}{4}, \dfrac{1}{4}\right) and radius 1 8 = 1 2 2 \dfrac{1}{\sqrt{8}} = \dfrac{1}{2\sqrt{2}} .

We can then let x 1 4 = 1 2 2 cos ( θ ) x - \dfrac{1}{4} = \dfrac{1}{2\sqrt{2}}\cos(\theta) and y 1 4 = 1 2 2 sin ( θ ) y - \dfrac{1}{4} = \dfrac{1}{2\sqrt{2}}\sin(\theta) .

From this we have that

x y = 1 2 2 ( cos ( θ ) sin ( θ ) ) = 1 2 ( 1 2 cos ( θ ) 1 2 sin ( θ ) ) = 1 2 sin ( π 4 θ ) x - y = \dfrac{1}{2\sqrt{2}}(\cos(\theta) - \sin(\theta)) = \dfrac{1}{2}\left(\dfrac{1}{\sqrt{2}}\cos(\theta) - \dfrac{1}{\sqrt{2}}\sin(\theta)\right) = \dfrac{1}{2}\sin\left(\dfrac{\pi}{4} - \theta \right) .

As the maximum of the sine function is 1 1 , we see that the maximum of x y x - y is 1 2 = 0.5 \dfrac{1}{2} = \boxed{0.5} .

Oh thats a clever factoring and geometrical interpretation!

+1!!

Harsh Shrivastava - 4 years, 2 months ago

Yup!! Did it in the same way. Geometry always comes in handy.

Mehul Chaturvedi - 4 years, 2 months ago

x + y = 2 ( x 2 + y 2 ) Given x + y ( x + y ) 2 = 2 ( x 2 + y 2 ) ( x 2 + 2 x y + y 2 ) = x 2 2 x y + y 2 = ( x y ) 2 Let ( x + y ) = t , ( x y ) 2 = f ( t ) = t t 2 f ( t ) = 1 2 t f ( t ) = 0 t = 1 2 f ( t ) = 2 < 0 f ( 1 2 ) = 1 4 is a maxima ( x y ) 2 1 4 1 2 x y 1 2 Maximum value of x y = 1 2 \begin{aligned}x+y&=2(x^2+y^2)\hspace{10mm}\small\color{#3D99F6}\text{Given}\\ x+y-(x+y)^2&=2(x^2+y^2)-(x^2+2xy+y^2)\\ &=x^2-2xy+y^2\\ &=(x-y)^2\\ \\\text{Let}(x+y)=t,\\ (x-y)^2 &=f(t)=t-t^2\\ f'(t)&=1-2t\\ f'(t)&=0 \implies t=\dfrac {1}{2}\\ f''(t)&=-2<0\\ \implies f(\dfrac {1}{2})=\dfrac{1}{4}& \text{ is a maxima}\\ (x-y)^2&\leq\dfrac{1}{4}\\ -\dfrac {1}{2}\leq x-y&\leq\dfrac{1}{2}\\ \text{Maximum}&\text{ value of }x-y=\boxed{\dfrac{1}{2}} \end{aligned}

Kushal Bose
Apr 2, 2017

2 ( x 2 + y 2 ) = x + y = > 2 ( x + y ) 2 4 x y = x + y = > 4 x y = ( x + y ) 2 ( x + y ) 2 2(x^2+y^2)=x+y \\ => 2(x+y)^2 -4xy=x+y \\ => 4xy=(x+y)- 2(x+y)^2

( x y ) 2 = ( x + y ) 2 4 x y = ( x + y ) ( x + y 2 ) (x-y)^2=(x+y)^2-4xy=(x+y)-(x+y^2)

Using the Completing-Square Rule-

( x y ) 2 = 1 4 ( x + y 1 / 2 ) 2 (x-y)^2=\dfrac{1}{4}-(x+y-1/2)^2

Maximum value occurs at x + y = 1 / 2 x+y=1/2 and maximum value of x y = 1 2 x-y=\dfrac{1}{2}

You can directly use, 2 ( x 2 + y 2 ) = ( x + y ) 2 + ( x y ) 2 2(x^2+y^2)=(x+y)^2+(x-y)^2 .

Anirban Karan - 4 years, 2 months ago

Log in to reply

Hm U r right

Kushal Bose - 4 years, 2 months ago
Ankit Kumar Jain
Apr 2, 2017

2 ( x 2 + y 2 ) = x + y 2(x^2 + y^2) = x + y

( x 1 4 ) 2 + ( y 1 4 ) 2 = 1 8 = ( x 1 4 ) 2 + ( 1 4 y ) 2 \Rightarrow \left(x - \dfrac{1}{4}\right)^2 + \left(y - \dfrac{1}{4}\right)^2 = \dfrac{1}{8} = \left(x - \dfrac{1}{4}\right)^2 + \left(\dfrac{1}{4} - y\right)^2

By Titu's Lemma ,

1 8 = ( x 1 4 ) 2 + ( 1 4 y ) 2 = ( x 1 4 ) 2 1 + ( 1 4 y ) 2 1 ( x y ) 2 2 \dfrac{1}{8} = \left(x - \dfrac{1}{4}\right)^2 + \left(\dfrac{1}{4} - y\right)^2 = \dfrac{\left(x - \dfrac{1}{4}\right)^2}{1} + \dfrac{\left(\dfrac{1}{4} - y\right)^2}{1} \geq \dfrac{(x - y)^2}{2}

( x y ) 1 2 \Rightarrow (x - y) \leq \dfrac{1}{2}

With equality if ( x 1 4 ) = ( 1 4 y ) x + y = 1 2 \left(x - \dfrac14\right) = \left(\dfrac14 - y\right) \Rightarrow \boxed{x + y = \dfrac12}

Very nice application of Titu's, I wouldn't have thought about this method.

Thanks for sharing, Ankit!!

Pi Han Goh - 4 years, 2 months ago

Log in to reply

Thankyou sir!

Ankit Kumar Jain - 4 years, 2 months ago
Ahmed Moh AbuBakr
Sep 14, 2017

James Pohadi
Apr 27, 2017

2 ( x 2 + y 2 ) = x + y 2 ( ( x + y ) 2 2 x y ) = ( x + y ) 2 ( x + y ) 2 4 x y = ( x + y ) ( x + y ) 2 4 x y = ( x + y ) ( x + y ) 2 ( x y ) 2 = ( x + y ) ( x + y ) 2 ( x y ) = ( x + y ) ( x + y ) 2 \begin{aligned} 2(x^2+y^2) &= x+y \\ 2((x+y)^{2}-2xy) &= (x+y) \\ 2(x+y)^{2}-4xy &= (x+y) \\ (x+y)^{2}-4xy &= (x+y)-(x+y)^{2} \\ (x-y)^{2} &= (x+y)-(x+y)^{2} \\ (x-y) &= \sqrt{ (x+y)-(x+y)^{2} } \end{aligned}

L H S LHS maximum when R H S RHS maximum.

R H S RHS maximum when ( x + y ) = 1 2 ( 1 ) = 1 2 (x+y) = - \dfrac{1}{ 2(-1) } = \dfrac{1}{2}

Putting ( x + y ) = 1 2 (x+y) =\dfrac{1}{2} , we have ( x y ) = 1 2 1 2 2 = 1 4 = 1 2 = 0.5 (x-y) = \sqrt{ \dfrac{1}{2}- \dfrac{1}{2}^{2} } = \sqrt{ \dfrac{1}{4} } = \dfrac{1}{2} = \boxed{0.5}

From am-gm we get x 2 + y 2 = 1 2 x^{2}+y^{2}=\frac{1}{2} and x + y = 1 x+y=1 , so we get maximum value of x y = 1 2 x-y=\frac{1}{2}

Why can't it be x^2+y^2 = 2, x+y = 2?

Pi Han Goh - 4 years, 2 months ago

I Got that from am gm

I Gede Arya Raditya Parameswara - 4 years, 2 months ago

Log in to reply

AMGM of what numbers? x and y? Note that AMGM only works if x and y are non-negative real numbers, but in this case, this problem didn't state if x,y are non-negative or not.

Pi Han Goh - 4 years, 2 months ago

No, This is AMGM of x 2 + y 2 x^{2}+y^{2} and x + y x+y becausa from this case x + y x+y definite positive

I Gede Arya Raditya Parameswara - 4 years, 2 months ago

Log in to reply

how do you know that x+y is positive? the question didn't state that.

Pi Han Goh - 4 years, 2 months ago

2 ( x 2 + y 2 2(x^{2}+y^{2} must positive so x + y x+y also positive right? @Pi Han Goh

I Gede Arya Raditya Parameswara - 4 years, 2 months ago

Log in to reply

why can't we have x=y=0?

Pi Han Goh - 4 years, 2 months ago

When x = y = 0 x=y=0 we can't Got maximum value of x y x-y . So x + y x+y must positive. @Pi Han Goh

I Gede Arya Raditya Parameswara - 4 years, 2 months ago

Log in to reply

if x+y = 0 must be positive, does that mean that both x and y must be positive? How do you know one of them can't be negative?

Pi Han Goh - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...