Exponents these days! :/

Algebra Level 2

Enter the sum of A = 1 1 + x b c + x b a + 1 1 + x c a + x c b + 1 1 + x a b + x a c A=\frac{1}{1+x^{b-c}+x^{b-a}}+\frac{1}{1+x^{c-a}+x^{c-b}}+\frac{1}{1+x^{a-b}+x^{a-c}} and B = ( x m x n ) m 2 + m n + n 2 × ( x n x l ) n 2 + n l + l 2 × ( x l x m ) l 2 + l m + m 2 B=\left(\frac{x^{m}}{x^{n}}\right)^{m^{2}+mn+n^{2}}\times\left(\frac{x^{n}}{x^{l}}\right)^{n^{2}+nl+l^{2}}\times\left(\frac{x^{l}}{x^{m}}\right)^{l^{2}+lm+m^{2}}


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Andrea Palma
Mar 31, 2015

Notice the first factor of B B is simply

( x m n ) m 2 + m n + n 2 = x ( m n ) ( m 2 + m n + n 2 ) = x m 3 n 3 \displaystyle{\left(x^{m-n} \right)^{m^2 +mn +n^2} = x^{(m-n)(m^2 + mn +n^2)} = x^{m^3 - n^3}}

Similarly for the other 2 factors of B B we get

B = x m 3 n 3 × x n 3 l 3 × x l 3 m 3 = x 0 = 1 \displaystyle{B = x^{m^3 - n^3} \times x^{n^3 - l^3} \times x^{l^3 - m^3} = x^0 = 1}

Notice for the first addend in A A

1 x b b + x b c + x b a = 1 x b ( S ) \dfrac{1}{x^{b-b} + x^{b-c} + x^{b-a} } = \dfrac{1}{x^b\left( S \right)}

where S = x b + x c + x a S = x^{-b} + x^{-c} + x^{-a} .

Similarly calculations for the other 2 addends of A A lead to

A = 1 x b S + 1 x a S + 1 x c S A = \dfrac{1}{x^b S } + \dfrac{1}{x^a S } + \dfrac{1}{x^c S }

A = 1 S ( 1 x b + 1 x a + 1 x c ) = 1 S ( x b + x c + x a ) = 1 A = \dfrac{1}{ S} \left( \dfrac{1}{x^b} + \dfrac{1}{x^a} + \dfrac{1}{x^c} \right) = \dfrac{1}{ S} \left( x^{-b} + x^{-c} + x^{-a} \right) = 1

hence A + B = 2 A + B = 2 .

Omkar Kulkarni
Mar 31, 2015

Simplify both of them separately. For A A ,

1 1 + x b c + x b a + 1 1 + x c a + x c b + 1 1 + x a b + x a c \frac{1}{1+x^{b-c}+x^{b-a}}+\frac{1}{1+x^{c-a}+x^{c-b}}+\frac{1}{1+x^{a-b}+x^{a-c}}

= 1 x b x b + x b x c + x b x a + 1 x c x c + x c x a + x c x b + 1 x a x a + x a x b + x a x c =\frac{1}{\frac{x^{b}}{x^{b}}+\frac{x^{b}}{x^{c}}+\frac{x^{b}}{x^{a}}}+\frac{1}{\frac{x^{c}}{x^{c}}+\frac{x^{c}}{x^{a}}+\frac{x^{c}}{x^{b}}}+\frac{1}{\frac{x^{a}}{x^{a}}+\frac{x^{a}}{x^{b}}+\frac{x^{a}}{x^{c}}}

= 1 x b ( 1 x a + 1 x b + 1 x c ) + 1 x c ( 1 x a + 1 x b + 1 x c ) + 1 x a ( 1 x a + 1 x b + 1 x c ) =\frac{1}{x^{b}\left(\frac{1}{x^{a}}+\frac{1}{x^{b}}+\frac{1}{x^{c}}\right)}+\frac{1}{x^{c}\left(\frac{1}{x^{a}}+\frac{1}{x^{b}}+\frac{1}{x^{c}}\right)}+\frac{1}{x^{a}\left(\frac{1}{x^{a}}+\frac{1}{x^{b}}+\frac{1}{x^{c}}\right)}

= ( 1 x a + 1 x b + 1 x c ) ( 1 1 x a + 1 x b + 1 x c ) =\left(\frac{1}{x^{a}}+\frac{1}{x^{b}}+\frac{1}{x^{c}}\right)\left(\frac{1}{\frac{1}{x^{a}}+\frac{1}{x^{b}}+\frac{1}{x^{c}}}\right)

= 1 =\boxed{1}

And for B B ,

( x m x n ) m 2 + m n + n 2 × ( x n x l ) n 2 + n l + l 2 × ( x l x m ) l 2 + l m + m 2 \left(\frac{x^{m}}{x^{n}}\right)^{m^{2}+mn+n^{2}}\times\left(\frac{x^{n}}{x^{l}}\right)^{n^{2}+nl+l^{2}}\times\left(\frac{x^{l}}{x^{m}}\right)^{l^{2}+lm+m^{2}}

= ( ( x m x n ) m 2 × ( x l x m ) m 2 ) × ( ( x m x n ) n 2 × ( x n x l ) n 2 ) × ( ( x n x l ) l 2 × ( x l x m ) l 2 ) × ( ( x m x n ) m n × ( x n x l ) n l × ( x l x m ) l m ) =\left(\left(\frac{x^{m}}{x^{n}}\right)^{m^{2}}\times\left(\frac{x^{l}}{x^{m}}\right)^{m^{2}}\right)\times\left(\left(\frac{x^{m}}{x^{n}}\right)^{n^{2}}\times\left(\frac{x^{n}}{x^{l}}\right)^{n^{2}}\right)\times\left(\left(\frac{x^{n}}{x^{l}}\right)^{l^{2}}\times\left(\frac{x^{l}}{x^{m}}\right)^{l^{2}}\right)\times\left(\left(\frac{x^{m}}{x^{n}}\right)^{mn}\times\left(\frac{x^{n}}{x^{l}}\right)^{nl}\times\left(\frac{x^{l}}{x^{m}}\right)^{lm}\right)

= x l m 2 x n m 2 × x m n 2 x l n 2 × x n l 2 x m l 2 × x m 2 n x m n 2 × x n 2 l x n l 2 × x l 2 m x l m 2 =\frac{x^{lm^{2}}}{x^{nm^{2}}}\times\frac{x^{mn^{2}}}{x^{ln^{2}}}\times\frac{x^{nl^{2}}}{x^{ml^{2}}}\times\frac{x^{m^{2}n}}{x^{mn^{2}}}\times\frac{x^{n^{2}l}}{x^{nl^{2}}}\times\frac{x^{l^{2}m}}{x^{lm^{2}}}

= 1 =\boxed{1}

Hence the answer is 2 \boxed{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...