Enter the sum of A = 1 + x b − c + x b − a 1 + 1 + x c − a + x c − b 1 + 1 + x a − b + x a − c 1 and B = ( x n x m ) m 2 + m n + n 2 × ( x l x n ) n 2 + n l + l 2 × ( x m x l ) l 2 + l m + m 2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Simplify both of them separately. For A ,
1 + x b − c + x b − a 1 + 1 + x c − a + x c − b 1 + 1 + x a − b + x a − c 1
= x b x b + x c x b + x a x b 1 + x c x c + x a x c + x b x c 1 + x a x a + x b x a + x c x a 1
= x b ( x a 1 + x b 1 + x c 1 ) 1 + x c ( x a 1 + x b 1 + x c 1 ) 1 + x a ( x a 1 + x b 1 + x c 1 ) 1
= ( x a 1 + x b 1 + x c 1 ) ( x a 1 + x b 1 + x c 1 1 )
= 1
And for B ,
( x n x m ) m 2 + m n + n 2 × ( x l x n ) n 2 + n l + l 2 × ( x m x l ) l 2 + l m + m 2
= ( ( x n x m ) m 2 × ( x m x l ) m 2 ) × ( ( x n x m ) n 2 × ( x l x n ) n 2 ) × ( ( x l x n ) l 2 × ( x m x l ) l 2 ) × ( ( x n x m ) m n × ( x l x n ) n l × ( x m x l ) l m )
= x n m 2 x l m 2 × x l n 2 x m n 2 × x m l 2 x n l 2 × x m n 2 x m 2 n × x n l 2 x n 2 l × x l m 2 x l 2 m
= 1
Hence the answer is 2 .
Problem Loading...
Note Loading...
Set Loading...
Notice the first factor of B is simply
( x m − n ) m 2 + m n + n 2 = x ( m − n ) ( m 2 + m n + n 2 ) = x m 3 − n 3
Similarly for the other 2 factors of B we get
B = x m 3 − n 3 × x n 3 − l 3 × x l 3 − m 3 = x 0 = 1
Notice for the first addend in A
x b − b + x b − c + x b − a 1 = x b ( S ) 1
where S = x − b + x − c + x − a .
Similarly calculations for the other 2 addends of A lead to
A = x b S 1 + x a S 1 + x c S 1
A = S 1 ( x b 1 + x a 1 + x c 1 ) = S 1 ( x − b + x − c + x − a ) = 1
hence A + B = 2 .