What a fascinating year we are in!

Calculus Level 3

lim x 1 x 2017 2 x + 1 x 2 1 \large \lim_{x\to1} \dfrac{x^{2017}-2x+1}{x^2-1}

Given that the limit above can be expressed as a b \dfrac{a}{b} , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Omar Sehlouli
Feb 9, 2017

lim x 1 x 2017 2 x + 1 x 2 1 \lim_{x\to1} \dfrac{x^{2017}-2x+1}{x^2-1} <=> lim x 1 x ( x 2016 1 ) ( x 1 ) x 2 1 \lim_{x\to1} \dfrac{x(x^{2016}-1)-(x-1)}{x^2-1}

applying the formula a n 1 = ( a 1 ) ( a n 1 + a n 2 + . . . + a + 1 ) a^n-1=(a-1)(a^{n-1}+a^{n-2}+...+a+1) <=> lim x 1 x ( x 1 ) ( x 2015 + x 2014 + . . . + x + 1 ) ( x 1 ) ( x 1 ) ( x + 1 ) \lim_{x\to1} \dfrac{x(x-1)(x^{2015}+x^{2014}+...+x+1)-(x-1)}{(x-1)(x+1)} <=> lim x 1 x ( x 2015 + x 2014 + . . . + x + 1 ) 1 ( x + 1 ) = 1 ( 1 2015 + 1 2014 + . . . + 1 + 1 ) 1 1 + 1 \lim_{x\to1} \dfrac{x(x^{2015}+x^{2014}+...+x+1)-1}{(x+1)} = \dfrac{1(1^{2015}+1^{2014}+...+1+1)-1}{1+1} So we can conclude that lim x 1 x 2017 2 x + 1 x 2 1 = 2015 2 \lim_{x\to1} \dfrac{x^{2017}-2x+1}{x^2-1} = \frac{2015}{2}

I used l'hospital to find the result :)

Peter van der Linden - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...