Two Versus Three

y + 1 2 + y 4 + 1 8 + y 16 + 1 32 + = 1 + x 3 + 1 9 + x 27 + 1 81 + x 243 + \begin{array} { l l l l l } & \color{#D61F06}{y} & +\frac { 1 }{ 2 } & +\frac { \color{#D61F06}{y} }{ 4 } & +\frac { 1 }{ 8 } & +\frac { \color{#D61F06}{y} }{ 16 } & +\frac { 1 }{ 32 }& + \dots\\ = & 1 & +\frac { \color{#3D99F6} {x} }{ 3 } & +\frac { 1 }{ 9 } & +\frac { \color{#3D99F6} {x} }{ 27 } & +\frac { 1 }{ 81 } & +\frac { \color{#3D99F6} {x} }{ 243 } & +\dots \end{array}

Find the smallest positive integer x \color{#3D99F6} {x} , such that there exists an integer y \color{#D61F06}{y} which satisfies the above equation.


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Amit Mittal
Feb 20, 2016

By rearranging the terms in LHS,

f ( x ) + 1 2 + f ( x ) 4 + 1 8 + f ( x ) 16 + 1 32 = f ( x ) ( 1 + 1 4 + 1 16 + 1 64 + ) + ( 1 2 + 1 8 + 1 32 + ) , infinite geometric progression sum = f ( x ) ( 1 1 1 / 4 ) + 1 / 2 1 1 / 4 = 4 3 f ( x ) + 2 3 \begin{aligned} && f\left( x \right) +\frac { 1 }{ 2 } +\frac { f\left( x \right) }{ 4 } +\frac { 1 }{ 8 } +\frac { f\left( x \right) }{ 16 } +\frac { 1 }{ 32 } \cdots \\ &=& f(x) \left(1 + \dfrac14 + \dfrac1{16} + \dfrac1{64} + \cdots \right) + \left( \dfrac12 + \dfrac18 + \dfrac1{32} + \cdots \right), \text{ infinite geometric progression sum} \\ &=&f(x) \left( \dfrac1{1 - 1/4} \right) + \dfrac{1/2}{1- 1/4} \\ & =& \dfrac43 f(x) + \dfrac23 \\ \end{aligned}

Similarly, by rearranging the terms in RHS,

1 + x 3 + 1 9 + x 27 + 1 81 + x 243 = ( 1 + 1 9 + 1 81 + ) + x ( 1 3 + 1 27 + 1 243 + ) = 1 1 1 / 9 + x 1 / 3 1 1 / 9 = 9 8 + 3 8 x \begin{aligned} && 1+\frac { x }{ 3 } +\frac { 1 }{ 9 } +\frac { x }{ 27 } +\frac { 1 }{ 81 } +\frac { x }{ 243 } \dots \\ &=& \left(1 + \dfrac19 + \dfrac1{81} + \cdots \right) + x \left( \dfrac13 + \dfrac1{27} + \dfrac1{243} + \cdots \right) \\ &=& \dfrac1{1- 1/9} + x \cdot \dfrac{1/3}{1- 1/9} \\ &=& \dfrac98 + \dfrac38 x \end{aligned}

Equating these two expressions:

4 3 f ( x ) + 2 3 = 9 8 + 3 8 x 8 ( 4 f ( x ) + 2 ) = 3 ( 9 + 3 x ) 32 f ( x ) + 16 = 27 + 9 x 9 x = 11 + 32 f ( x ) . \begin{aligned} \dfrac43 f(x) + \dfrac23 &=& \dfrac98 + \dfrac38 x \\ 8(4f(x) + 2) &=& 3(9 + 3x) \\ 32f(x) + 16 &=& 27 + 9x \\ 9x &=& -11 + 32f(x). \end{aligned}

And we want to find the smallest value of x x such that 9 x + 11 9x + 11 is divisible by 32.

With modulo 32, we have 9 z 11 63 z 77 z 77 z 77 13 ( m o d 32 ) 9z \equiv -11 \Rightarrow 63z \equiv -77 \Rightarrow -z \equiv -77 \Rightarrow z \equiv 77 \equiv 13 \pmod{32} .

And thus the answer is 13 \boxed{13} .

Look at Amit's solution. We can get 32 f ( x ) 9 x = 11 ; [1] 32 f(x) - 9 x = 11 \text{; [1] } . We are looking for integers solutions for [1] , so [1] is a diophantine equation which solutions are ( f ( x ) = 22 + 9 λ , x = 77 + 32 λ ) (f(x) = 22 + 9 \cdot \lambda, x = 77 + 32 \cdot \lambda) with λ Z \lambda \in \mathbb{Z} , therefore the minimum value for x to be a natural number is got for λ = 2 x = 13 \lambda = - 2 \Rightarrow x = 13

Jonas Katona
Feb 22, 2016

How did this get changed to number theory from algebra??

Probably the staff or some moderator changed it. This problem does seem to belong in Number Theory instead of Algebra.

Prasun Biswas - 5 years, 3 months ago

Log in to reply

Why so? When I created this problem, I intended it to be solved through mainly algebraic methods (as shown by Amit's solution above).

Is it the fact that I asked for the "smallest natural integer" x x ?

Jonas Katona - 5 years, 3 months ago

Log in to reply

Yup! Because of that, the final answer is the smallest positive solution to the congruence 9 z 11 ( m o d 32 ) 9z\equiv -11\pmod{32} which is usually solved by finding the modular inverse of 9 9 modulo 32 32 , although it can be solved using just basic modular arithmetic manipulations.

9 z 11 63 z 77 z 77 z 77 13 ( m o d 32 ) 9z\equiv -11\implies 63z\equiv -77\implies -z\equiv -77\implies z\equiv 77\equiv 13\pmod{32}

This problem is actually a mix of algebra and number theory but I think it's more suited in Number Theory than in the Algebra section.

Prasun Biswas - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...