What a Limit!

Calculus Level 5

lim x 0 ( 1 e x ) sin x x = ? \large \lim_{x\rightarrow 0}\left\lfloor (1-e^{x})\frac{\sin x}{\left | x \right |} \right \rfloor = \, ?

Notations:

0 Limit does not exist -1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider the limits when x 0 + x \to 0^+ and x 0 x \to 0^- separately.

L + = lim x 0 + ( 1 e x ) sin x x = lim x 0 + ( 1 e x ) sin x x = ( 1 e 0 + ) sin 0 + 0 + = ( 1 e 0 + ) 1 Note that e 0 + > 1 = 1 \begin{aligned} L_+ & = \lim_{x \to 0^+} \left \lfloor (1-e^x) \frac {\sin x}{\color{#3D99F6}|x|} \right \rfloor \\ & = \lim_{x \to 0^+} \left \lfloor (1-e^x) \frac {\sin x}{\color{#3D99F6}x} \right \rfloor \\ & = \left \lfloor (1-e^{0^+}) {\color{#3D99F6}\frac {\sin 0^+}{0^+}} \right \rfloor \\ & = \left \lfloor (1-{\color{#D61F06}e^{0^+}}) {\color{#3D99F6}1} \right \rfloor & \small \color{#D61F06} \text{Note that }e^{0^+} > 1 \\ & = - 1 \end{aligned}

L = lim x 0 ( 1 e x ) sin x x = lim x 0 ( 1 e x ) sin x x = ( 1 e 0 ) sin 0 0 = ( 1 e 0 ) ( 1 ) Note that e 0 + < 1 = 1 \begin{aligned} L_- & = \lim_{x \to 0^-} \left \lfloor (1-e^x) \frac {\sin x}{\color{#D61F06}|x|} \right \rfloor \\ & = \lim_{x \to 0^-} \left \lfloor (1-e^x) \frac {\sin x}{\color{#D61F06}-x} \right \rfloor \\ & = \left \lfloor (1-e^{0^-}) {\color{#D61F06}\frac {\sin 0^-}{-0^-}} \right \rfloor \\ & = \left \lfloor (1-{\color{#3D99F6}e^{0^-}}) ({\color{#D61F06}-1}) \right \rfloor & \small \color{#3D99F6} \text{Note that }e^{0^+} < 1 \\ & = - 1 \end{aligned}

Since L + = L = 1 L = 1 L_+ = L_- = -1\implies L = \boxed{-1}

( link try to do this problem please

Sudhamsh Suraj - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...