What A Series

Calculus Level 3

If f ( x ) = ( x + 1 ) ( x + 2 ) ( x + 3 ) ( x + n ) f(x)=(x+1)(x+2)(x+3) \ldots (x+n) then what is f ( 0 ) f^{'}(0) ?

n ! ( 1 + 1 2 + 1 3 + . . . . . 1 n ) n!(1+\frac{1}{2}+\frac{1}{3}+.....\frac{1}{n}) n! ( 1 + 1 2 + 1 3 + . . . . . 1 n ) (1+\frac{1}{2}+\frac{1}{3}+.....\frac{1}{n}) 1 1 1 -1 n × n ! n\times{n!} 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 23, 2015

f ( x ) = ( x + 1 ) ( x + 2 ) ( x + 3 ) . . . ( x + n ) f ( x ) = [ ( x + 2 ) ( x + 3 ) ( x + 4 ) . . . ( x + n ) ] + [ ( x + 1 ) ( x + 3 ) ( x + 4 ) . . . ( x + n ) ] + [ ( x + 1 ) ( x + 2 ) ( x + 4 ) . . . ( x + n ) ] + . . . . . . + [ ( x + 1 ) ( x + 2 ) ( x + 3 ) . . . ( x + n 1 ) ] = f ( x ) ( x + 1 ) + f ( x ) ( x + 2 ) + f ( x ) ( x + 3 ) + . . . + f ( x ) ( x + n ) = f ( x ) ( 1 x + 1 + 1 x + 2 + 1 x + 3 + . . . + 1 x + n ) f ( 0 ) = f ( 0 ) ( 1 1 + 1 2 + 1 3 + . . . + 1 n ) = n ! ( 1 + 1 2 + 1 3 + . . . + 1 n ) f(x) = (x+1)(x+2)(x+3)...(x+n)\\ \begin{aligned} \Rightarrow f'(x) & = [(x+2)(x+3)(x+4)...(x+n)] \\ & \quad \quad +[(x+1)(x+3)(x+4)...(x+n)]\\ & \quad \quad \quad + [(x+1)(x+2)(x+4)...(x+n)] +...\\ &\quad \quad \quad \quad ...+[(x+1)(x+2)(x+3)...(x+n-1)] \\ & = \dfrac {f(x)}{(x+1)} + \dfrac {f(x)}{(x+2)} + \dfrac {f(x)}{(x+3)} +...+ \dfrac {f(x)}{(x+n)} \\ &= f(x)\left(\frac{1}{x+1} + \frac{1}{x+2} + \frac{1}{x+3} +...+ \frac{1}{x+n}\right) \\ \Rightarrow f'(0) & = f(0)\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} +...+ \frac{1}{n}\right) \\ & = \boxed{n! \left(1+ \dfrac{1}{2} + \dfrac{1}{3} +...+ \dfrac{1}{n}\right)} \end{aligned}

Okay, let us try on the logarithm method.

f ( x ) = k = 1 n ( x + k ) f(x)=\displaystyle \prod_{k=1}^n {(x+k)}

ln ( f ( x ) ) = k = 1 n ln ( x + k ) f ( x ) f ( x ) = k = 1 n 1 x + k f ( x ) = f ( x ) k = 1 n 1 x + k f ( 0 ) = f ( 0 ) k = 1 n 1 k = n ! ( 1 + 1 2 + 1 3 + . . . + 1 n ) \begin{aligned} \Rightarrow \ln{(f(x))} & = \displaystyle \sum_{k=1}^n {\ln{(x+k)}} \\ \dfrac {f'(x)}{f(x)} & = \displaystyle \sum_{k=1}^n {\dfrac{1}{x+k}} \\ \Rightarrow f'(x) & = f(x) \displaystyle \sum_{k=1}^n {\dfrac{1}{x+k}} \\ \Rightarrow f'(0) & = f(0) \displaystyle \sum_{k=1}^n {\dfrac{1}{k}} = \boxed{n!\left( 1 + \dfrac{1}{2} + \dfrac{1}{3} +...+ \dfrac{1}{n} \right) } \end{aligned}

Moderator note:

There's an easier way to solve this. Hint: Logarithm.

I solved it using logarithm. A simple problem

Aayush Patni - 6 years, 1 month ago

I only focus the coeficient x x since the derivative of x x towards d x dx is absolutely 1 1

Figel Ilham - 6 years ago

@Chew-Seong Cheong , there's a typo in your solution (the expression for f ( x ) f^\prime(x) in first approach). You missed the x x 's in the denominator. It should be,

f ( x ) = f ( x ) ( 1 x + 1 + 1 x + 2 + + 1 x + n ) = f ( x ) ( k = 1 n 1 x + k ) f^\prime(x)=f(x)\left(\frac 1{x+1}+\frac 1{x+2}+\ldots+\frac 1{x+n}\right)=f(x)\left(\sum_{k=1}^n\frac 1{x+k}\right)

Prasun Biswas - 6 years ago

Log in to reply

Prasun, thanks a lot.

Chew-Seong Cheong - 6 years ago

Log in to reply

Mention not. :)

Prasun Biswas - 6 years ago
Curtis Clement
Apr 24, 2015

L n ( f ( x ) ) = k = 1 n ( x + k ) Ln(f(x)) = \displaystyle\sum_{k=1}^{n} (x+k) f ( x ) f ( x ) = k = 1 n 1 x + k f ( x ) = k = 1 n f ( x ) x + k \Rightarrow\frac{f'(x)}{f(x)} = \displaystyle\sum_{k=1}^{n} \frac{1}{x+k} \Rightarrow\ f'(x) = \displaystyle\sum_{k=1}^{n} \frac{f(x)}{x+k} f ( 0 ) = n ! ( 1 + 1 2 + 1 3 + + 1 n ) \therefore\ f'(0) = n! (1+\frac{1}{2} +\frac{1}{3} + \cdots + \frac{1}{n} )

Akash Gaonkar
Apr 27, 2015

I have little familiarity with the logarithm method, but found another relatively simple solution.

Since we seek f ( 0 ) f'(0) , we know that the only important terms of f ( x ) f(x) are those that are part of the coefficient of x x , all others disappear or evaluate to 0 0 .

So if we imagine that the entire sequence is multiplied out into individual terms, the important ones are ( x 2 3 4 . . . n ) , (x \cdot 2 \cdot 3 \cdot 4 \cdot ... \cdot n), ( 1 x 3 4 . . . n ) , (1 \cdot x \cdot 3 \cdot 4 \cdot ... \cdot n), ( 1 2 x 4 . . . n ) , (1 \cdot 2 \cdot x \cdot 4 \cdot ... \cdot n), ... all the way up to ( 1 2 . . . ( n 1 ) x ) . (1 \cdot 2 \cdot ... \cdot (n-1) \cdot x).

The i i th important term in the sequence equals n ! / i x n!/i \cdot x .

When we take the derivative, the coefficients remain, and they add up to

n ! / 1 + n ! / 2 + n ! / 3 + n ! / 4 + . . . n ! / n = n ! ( 1 + 1 / 2 + 1 / 3 + . . . + 1 / n ) . n!/1 + n!/2 + n!/3 + n!/4 + ... n!/n \\ = n!(1 + 1/2 + 1/3 + ... + 1/n).

QED .

Note: Slightly more generally, to find f ( k ) f'(k) (where f f is still the function above), we could probably use a transformation on f f , such as f ( x ) = g ( x k ) f(x) = g(x - k) , allowing us to solve the problem in terms of g ( 0 ) g'(0) . I haven't tried to see if this works (it's getting a little late in my time zone), so it is purely speculation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...