Find the value of the sum
∑ n = 1 ∞ A n
Where A n = ∑ k 1 = 1 ∞ ⋯ ∑ k n = 1 ∞ k 1 2 1 k 1 2 + k 2 2 1 ⋯ k 1 2 + ⋯ + k n 2 1
The answer comes in the form e b π a − 1
Find a + b
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
it is easy to show that ∫ ∫ ⋯ ∫ 0 < x 1 < x 2 < ⋯ < x n e − ( a 1 x n + a 2 x n − 1 + ⋯ + a n − 1 x 2 + a n x 1 ) d x 1 d x 2 ⋯ d x n = a 1 ( a 1 + a 2 ) ⋯ ( a 1 + a 2 + ⋯ a n ) 1 for all a 1 , a 2 , . . . , a n > 0 . Thus A n = k 1 , k 2 , . . . , k n = 1 ∑ ∞ k 1 2 ( k 1 2 + k 2 2 ) ⋯ ( k 1 2 + k 2 2 + ⋯ k n 2 ) 1 = k 1 , k 2 , . . . , k n = 1 ∑ ∞ ∫ ∫ ⋯ ∫ 0 < x 1 < x 2 < ⋯ < x n e − ( k 1 2 x n + k 2 2 x n − 1 + ⋯ + k n − 1 2 x 2 + k n 2 x 1 ) d x 1 d x 2 ⋯ d x n = ∫ ∫ ⋯ ∫ 0 < x 1 < x 2 < ⋯ < x n F ( x 1 ) F ( x 2 ) ⋯ F ( x n ) d x 1 d x 2 ⋯ d x n for any n ∈ N , where F ( x ) = k = 1 ∑ ∞ e − k 2 x By symmetry it is clear that A n = n ! 1 ∫ 0 ∞ ∫ 0 ∞ ⋯ ∫ 0 ∞ F ( x 1 ) F ( x 2 ) ⋯ F ( x n ) d x 1 d x 2 ⋯ d x n = n ! 1 ( ∫ 0 ∞ F ( x ) d x ) n = n ! 1 ( k = 1 ∑ ∞ k − 2 ) 2 = n ! 1 ( 6 1 π 2 ) n and hence n = 1 ∑ ∞ A n = e 6 1 π 2 − 1 making the answer 2 + 6 = 8 .