What a summation

Calculus Level 5

Find the value of the sum

n = 1 A n \sum_{n=1}^\infty A_n

Where A n = k 1 = 1 k n = 1 1 k 1 2 1 k 1 2 + k 2 2 1 k 1 2 + + k n 2 A_n=\sum_{k_1=1}^\infty\cdots\sum_{k_n=1}^\infty \frac{1}{k_1^2}\frac{1}{k_1^2+k_2^2}\cdots\frac{1}{k_1^2+\cdots+k_n^2}

The answer comes in the form e π a b 1 e^{\frac{\pi^a}{b}}-1

Find a + b a+b


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 24, 2019

it is easy to show that 0 < x 1 < x 2 < < x n e ( a 1 x n + a 2 x n 1 + + a n 1 x 2 + a n x 1 ) d x 1 d x 2 d x n = 1 a 1 ( a 1 + a 2 ) ( a 1 + a 2 + a n ) \int\int \cdots \int_{0 < x_1 < x_2 < \cdots < x_n} e^{-(a_1x_n + a_2x_{n-1} + \cdots + a_{n-1}x_2 + a_nx_1)}\,dx_1\,dx_2\,\cdots\,dx_n \; = \; \frac{1}{a_1(a_1+a_2)\cdots(a_1+a_2+\cdots a_n)} for all a 1 , a 2 , . . . , a n > 0 a_1,a_2,...,a_n > 0 . Thus A n = k 1 , k 2 , . . . , k n = 1 1 k 1 2 ( k 1 2 + k 2 2 ) ( k 1 2 + k 2 2 + k n 2 ) = k 1 , k 2 , . . . , k n = 1 0 < x 1 < x 2 < < x n e ( k 1 2 x n + k 2 2 x n 1 + + k n 1 2 x 2 + k n 2 x 1 ) d x 1 d x 2 d x n = 0 < x 1 < x 2 < < x n F ( x 1 ) F ( x 2 ) F ( x n ) d x 1 d x 2 d x n \begin{aligned} A_n & = \; \sum_{k_1,k_2,...,k_n=1}^\infty \frac{1}{k_1^2(k_1^2+k_2^2) \cdots (k_1^2+k_2^2 +\cdots k_n^2)} \\ & = \; \sum_{k_1,k_2,...,k_n=1}^\infty \int\int \cdots \int_{0 < x_1 < x_2 < \cdots < x_n} e^{-(k_1^2x_n + k_2^2x_{n-1} + \cdots + k_{n-1}^2x_2 + k_n^2x_1)}\,dx_1\,dx_2\,\cdots\,dx_n \\ & = \; \int\int \cdots \int_{0 < x_1 < x_2 < \cdots < x_n} F(x_1)F(x_2)\cdots F(x_n)\,dx_1\,dx_2\,\cdots\,dx_n \end{aligned} for any n N n \in \mathbb{N} , where F ( x ) = k = 1 e k 2 x F(x) \; = \; \sum_{k=1}^\infty e^{-k^2x} By symmetry it is clear that A n = 1 n ! 0 0 0 F ( x 1 ) F ( x 2 ) F ( x n ) d x 1 d x 2 d x n = 1 n ! ( 0 F ( x ) d x ) n = 1 n ! ( k = 1 k 2 ) 2 = 1 n ! ( 1 6 π 2 ) n A_n \; = \; \frac{1}{n!} \int_0^\infty\int_0^\infty\cdots \int_0^\infty F(x_1)F(x_2)\cdots F(x_n)\,dx_1\,dx_2\,\cdots\,dx_n \; = \; \frac{1}{n!}\left(\int_0^\infty F(x)\,dx\right)^n \; = \; \frac{1}{n!}\left(\sum_{k=1}^\infty k^{-2}\right)^2 \; = \; \frac{1}{n!}\left(\tfrac16\pi^2\right)^n and hence n = 1 A n = e 1 6 π 2 1 \sum_{n=1}^\infty A_n \; = \; e^{\frac16\pi^2} - 1 making the answer 2 + 6 = 8 2+6 = \boxed{8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...