What a Trigonometric Product!

Geometry Level 4

What is the sum of all positive integer values of n n that satisfy the equation

cos ( π n ) cos ( 2 π n ) cos ( 4 π n ) cos ( 8 π n ) cos ( 16 π n ) = 1 32 ? \cos\Bigl(\frac{\pi}{n}\Bigr)\cos\Bigl(\frac{2\pi}{n}\Bigr)\cos\Bigl(\frac{4\pi}{n}\Bigr)\cos\Bigl(\frac{8\pi}{n}\Bigr)\cos\Bigl(\frac{16\pi}{n}\Bigr) =\frac{1}{32}\, ?


The answer is 47.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Danish Ahmed
Feb 28, 2015

sin ( π n ) cos ( π n ) cos ( 2 π n ) cos ( 4 π n ) cos ( 8 π n ) cos ( 16 π n ) \sin\Bigl(\frac{\pi}{n}\Bigr)\cos\Bigl(\frac{\pi}{n}\Bigr)\cos\Bigl(\frac{2\pi}{n}\Bigr)\cos\Bigl(\frac{4\pi}{n}\Bigr)\cos\Bigl(\frac{8\pi}{n}\Bigr)\cos\Bigl(\frac{16\pi}{n}\Bigr) = 1 32 sin ( 32 π n ) =\dfrac{1}{32}\sin \Bigl(\frac{32\pi}{n}\Bigr)

Therefore the equation can be written as :

sin ( 32 π n ) = sin ( π n ) \sin (\dfrac{32\pi}{n})=\sin(\dfrac{\pi}{n})

or cos ( 33 π 2 n ) sin ( 31 π 2 n ) = 0 \cos(\dfrac{33\pi}{2n}) \sin(\dfrac{31\pi}{2n})=0

So 33 π 2 n = π 2 + π k \dfrac{33\pi}{2n} = \dfrac{\pi}{2} + \pi k or 31 π 2 n = π k \dfrac{31\pi}{2n} = \pi k . The first case yields n = 1 , 3 , 11 , 33 n=1,3,11,33 and the second case yields no solutions. n = 1 n=1 is clearly extraneous, so the answer is 47 47

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...