What about the reciprocals of primes?

Let A ( x ) = p x 1 p , A(x)=\displaystyle \sum_{p \leq x}^{} \frac{1}{p}, where p p runs through all positive primes not greater than x x .

Is it true that A ( e e 3 ) > 1 ? A\big(e^{e^3}\big) > 1?


Clarification: e 2.71828 e \approx 2.71828 denotes the Euler's number .

Yes No Can't be determined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Sep 13, 2017

Method 1: 1 < 1 / 2 + 1 / 3 + 1 / 5 + 1 / 7 = A ( 7 ) < A ( e e 3 ) 1 < 1/2 + 1/3 + 1/5 + 1/7 = A(7) < A\left (e^{e^3}\right) .


Method 2: I'll prove a stronger result, A ( n ) > 2.5 A(n) > 2.5 for sufficiently large n n .

Assume all sums and product over p p are over the set of prime numbers.

Claim: A ( n ) = p n 1 p > ln ( ln n ) 1 2 \displaystyle A(n) = \sum_{p \leq n}\dfrac1p > \ln(\ln n) - \dfrac12 .

Proof: We start with p n ( 1 1 p ) 1 = p n k = 0 1 p k k = 1 n 1 k > 1 n 1 x d x = ln n . \prod_{p\leq n } \left( 1 - \dfrac1p \right)^{-1} = \prod_{p\leq n} \sum_{k=0}^\infty \dfrac1{p^k} \geq \sum_{k=1}^n \dfrac1k > \int_1^n \dfrac1x \, dx = \ln n .

And

ln [ p n ( 1 1 p ) 1 ] = p n ln ( 1 1 p ) 1 = p n k = 1 1 k p k < p n 1 p + p n 1 2 p 2 ( k = 0 1 p k ) = p n 1 p + 1 2 p n 1 p ( p 1 ) < p n 1 p + 1 2 n = 2 1 p ( p 1 ) < p n 1 p + 1 2 p n 1 p > ln [ p n ( 1 1 p ) 1 ] 1 2 > ln ( ln n ) 1 2 \begin{aligned} \ln \left [ \prod_{p\leq n } \left(1 - \dfrac1p \right)^{-1}\right ] &= &\sum_{p \leq n} \ln \left( 1 - \dfrac1p \right)^{-1} = \sum_{p \leq n} \sum_{k=1}^\infty \dfrac1{k p^k} \\ &<& \sum_{p \leq n} \dfrac1p + \sum_{p \leq n} \dfrac1{2p^2} \left( \sum_{k=0}^\infty \dfrac1{p^k} \right) \\ &=& \sum_{p \leq n} \dfrac1p + \dfrac12 \sum_{p \leq n} \dfrac1{p(p-1)} < \sum_{p \leq n} \dfrac1p + \dfrac12 \sum_{n=2}^\infty \dfrac1{p(p-1)} \\ &<& \sum_{p \leq n} \dfrac1p + \dfrac12 \\ \sum_{p \leq n} \dfrac1p &>& \ln \left [ \prod_{p\leq n } \left(1 - \dfrac1p \right)^{-1}\right ] - \dfrac12 > \ln (\ln n) - \dfrac12 \quad \square \\ \end{aligned}

In this case, x = e e 3 x = e^{e^3} . Thus, A ( e e 3 ) > ln ( ln ( e e 3 ) ) 1 2 = 2.5 > 1 A\left( e^{e^3} \right) > \ln\left (\ln \left(e^{e^3} \right)\right) - \dfrac12 = 2.5 > 1 .

The answer is Yes, it is true \boxed{\text{Yes, it is true}} .


Source: ProofWiki.Org

Note that lim n ( p n 1 p ln ( ln n ) ) = M 0.261 \displaystyle \lim_{n\to\infty} \left( \sum_{p \leq n} \dfrac1p - \ln(\ln n) \right ) = M \approx 0.261 , where M M denotes the Meissel–Mertens constant .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...