What about this ?

Calculus Level 5

We know that 0 x 2 e x 1 d x = 2 ζ ( 3 ) \displaystyle \int_0^\infty \dfrac{x^2}{e^x-1}\; dx = 2\zeta(3) . But if we also knew the value of 0 ( x e x 1 ) 2 d x \displaystyle \int_0^\infty \left(\dfrac{x}{e^x-1}\right)^2\; dx , then what would have been the value of:

0 x 2 e x 1 d x + 0 ( x e x 1 ) 2 d x = ? \int_0^\infty \dfrac{x^2}{e^x-1}\; dx + \int_0^\infty \left(\dfrac{x}{e^x-1}\right)^2\; dx = ?

If the answer can be expressed as π A B \dfrac{\pi^A}{B} for positive integers A A and B B then find A × B A\times B .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First Last
Jun 27, 2017

I = 0 x 2 ( e x 1 ) 2 d x = 0 n = 0 i = 0 x 2 e x e n x e x e i x d x = 0 n = 1 i = 1 x 2 e ( n + i ) x d x \displaystyle \text{I}=\int_0^\infty\frac{x^2}{(e^x-1)^2}dx=\int_0^\infty\sum_{n=0}^\infty\sum_{i=0}^\infty x^2e^{-x}e^{-nx}e^{-x}e^{-ix}dx = \int_0^\infty\sum_{n=1}^\infty\sum_{i=1}^\infty x^2e^{-(n+i)x}dx

Using: 0 x b e a x n d x = Γ ( b + 1 n ) n a b + 1 n By subbing u = a x n with Gamma definition \displaystyle\text{Using: }\int_0^\infty x^be^{-ax^n}dx=\frac{\Gamma(\frac{b+1}{n})}{n\,a^{\frac{b+1}{n}}}\text{ By subbing }u=ax^n\text{ with Gamma definition}

n = 1 i = 1 0 x 2 e ( n + i ) x d x = 2 n = 1 i = 1 1 ( n + i ) 3 = 2 [ n = 1 i = 0 1 ( n + i ) 3 ] 2 ζ ( 3 ) \displaystyle\sum_{n=1}^\infty\sum_{i=1}^\infty\int_0^\infty x^2e^{-(n+i)x}dx = 2\sum_{n=1}^\infty\sum_{i=1}^\infty\frac1{(n+i)^3}=2\Bigg[\sum_{n=1}^\infty\sum_{i=0}^\infty\frac1{(n+i)^3}\Bigg]-2\zeta(3)

Looking term by term: 2 n = 1 i = 0 1 ( n + i ) 3 = 2 n = 1 n n 3 = 2 ζ ( 2 ) \displaystyle\text{Looking term by term: }2\sum_{n=1}^\infty\sum_{i=0}^\infty\frac1{(n+i)^3} = 2\sum_{n=1}^\infty\frac{n}{n^3}=2\zeta(2)

I + 2 ζ ( 3 ) = 2 ζ ( 2 ) 2 ζ ( 3 ) + 2 ζ ( 3 ) = π 2 3 \text{I}+2\zeta(3) = 2\zeta(2)-2\zeta(3)+2\zeta(3) = \frac{\pi^2}{3}

A nice formula n = 1 ζ ( a , n ) = ζ ( a 1 ) a > 2 \displaystyle\sum_{n=1}^\infty\zeta(a,n)=\zeta(a-1)\quad a>2

First Last - 3 years, 11 months ago

nice solution!. an interesting recursion arises for the integral 0 x k ( e x 1 ) n d x \int_0^\infty \dfrac{x^k}{(e^x-1)^n} dx

Aareyan Manzoor - 3 years, 11 months ago
Mark Hennings
Jun 28, 2017

Alternatively, 0 x 2 ( e x 1 ) 2 d x = 0 x 2 e 2 x ( n = 0 ( n + 1 ) e n x ) d x = n = 0 ( n + 1 ) 0 x 2 e ( n + 2 ) x d x = 2 n = 0 n + 1 ( n + 2 ) 3 = 2 n = 0 ( 1 ( n + 2 ) 2 1 ( n + 2 ) 3 ) = 2 n = 2 ( 1 n 2 1 n 3 ) = 2 ( ζ ( 2 ) ζ ( 3 ) ) = 1 3 π 2 2 ζ ( 3 ) \begin{aligned} \int_0^\infty \frac{x^2}{(e^x-1)^2}\,dx & = \int_0^\infty x^2 e^{-2x} \left(\sum_{n=0}^\infty (n+1)e^{-nx}\right)\,dx \; = \; \sum_{n=0}^\infty (n+1)\int_0^\infty x^2 e^{-(n+2)x}\,dx \\ & = \; 2\sum_{n=0}^\infty \frac{n+1}{(n+2)^3} \; = \; 2\sum_{n=0}^\infty \left(\frac{1}{(n+2)^2} - \frac{1}{(n+2)^3}\right) \\ & = \; 2\sum_{n=2}^\infty \left(\frac{1}{n^2} - \frac{1}{n^3}\right) \; = \; 2\big(\zeta(2) - \zeta(3)\big) \\ & = \; \tfrac13\pi^2 - 2\zeta(3) \end{aligned} making the answer 2 × 3 = 6 2 \times 3 = \boxed{6} .

That's exactly how I did :-) , in fact I didn't solve this one but I was solving 0 ln m ( 1 + x 2 ) x 2 n + 1 d x \displaystyle \int_0^\infty \dfrac{\ln^m(1+x^2)}{x^{2n+1}}\; dx

Aditya Narayan Sharma - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...