We know that ∫ 0 ∞ e x − 1 x 2 d x = 2 ζ ( 3 ) . But if we also knew the value of ∫ 0 ∞ ( e x − 1 x ) 2 d x , then what would have been the value of:
∫ 0 ∞ e x − 1 x 2 d x + ∫ 0 ∞ ( e x − 1 x ) 2 d x = ?
If the answer can be expressed as B π A for positive integers A and B then find A × B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A nice formula n = 1 ∑ ∞ ζ ( a , n ) = ζ ( a − 1 ) a > 2
nice solution!. an interesting recursion arises for the integral ∫ 0 ∞ ( e x − 1 ) n x k d x
Alternatively, ∫ 0 ∞ ( e x − 1 ) 2 x 2 d x = ∫ 0 ∞ x 2 e − 2 x ( n = 0 ∑ ∞ ( n + 1 ) e − n x ) d x = n = 0 ∑ ∞ ( n + 1 ) ∫ 0 ∞ x 2 e − ( n + 2 ) x d x = 2 n = 0 ∑ ∞ ( n + 2 ) 3 n + 1 = 2 n = 0 ∑ ∞ ( ( n + 2 ) 2 1 − ( n + 2 ) 3 1 ) = 2 n = 2 ∑ ∞ ( n 2 1 − n 3 1 ) = 2 ( ζ ( 2 ) − ζ ( 3 ) ) = 3 1 π 2 − 2 ζ ( 3 ) making the answer 2 × 3 = 6 .
That's exactly how I did :-) , in fact I didn't solve this one but I was solving ∫ 0 ∞ x 2 n + 1 ln m ( 1 + x 2 ) d x
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 ∞ ( e x − 1 ) 2 x 2 d x = ∫ 0 ∞ n = 0 ∑ ∞ i = 0 ∑ ∞ x 2 e − x e − n x e − x e − i x d x = ∫ 0 ∞ n = 1 ∑ ∞ i = 1 ∑ ∞ x 2 e − ( n + i ) x d x
Using: ∫ 0 ∞ x b e − a x n d x = n a n b + 1 Γ ( n b + 1 ) By subbing u = a x n with Gamma definition
n = 1 ∑ ∞ i = 1 ∑ ∞ ∫ 0 ∞ x 2 e − ( n + i ) x d x = 2 n = 1 ∑ ∞ i = 1 ∑ ∞ ( n + i ) 3 1 = 2 [ n = 1 ∑ ∞ i = 0 ∑ ∞ ( n + i ) 3 1 ] − 2 ζ ( 3 )
Looking term by term: 2 n = 1 ∑ ∞ i = 0 ∑ ∞ ( n + i ) 3 1 = 2 n = 1 ∑ ∞ n 3 n = 2 ζ ( 2 )
I + 2 ζ ( 3 ) = 2 ζ ( 2 ) − 2 ζ ( 3 ) + 2 ζ ( 3 ) = 3 π 2