What are the minimum values?

Algebra Level 5

Determine the minimal values of ( x + 1 y ) ( x + 1 y 2018 ) + ( y + 1 x ) ( y + 1 x 2018 ) \left(x+\frac{1}{y}\right) \left(x+\frac{1}{y}-2018\right)+ \left(y+\frac{1}{x}\right) \left(y+\frac{1}{x}-2018\right) and ( x + 1 y ) ( x + 1 y + 2018 ) + ( y + 1 x ) ( y + 1 x + 2018 ) \left(x+\frac{1}{y}\right)\left(x+\frac{1}{y}+2018\right)+\left(y+\frac{1}{x}\right)\left(y+\frac{1}{x}+2018\right) for positive reals x x and y y . What is the sum of these minimal values?

From BxMO 2018


The answer is -2028082.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 4, 2018

Multiplying out and regrouping, the first expression is equal to S 1 = [ x + x 1 1009 ] 2 + [ y + y 1 1009 ] 2 2 × 100 9 2 + 2 ( x y y x ) 2 S_1 \; = \; \left[x + x^{-1} - 1009\right]^2 + \left[y +y^{-1} - 1009\right]^2 - 2\times1009^2 + 2\left(\sqrt{\tfrac{x}{y}} - \sqrt{\tfrac{y}{x}}\right)^2 so we see that S 1 2 × 100 9 2 S_1 \ge -2 \times 1009^2 for all x , y > 0 x,y > 0 , with equality when x = y = 1 2 ( 1009 + 100 9 2 4 ) x=y=\tfrac12\big(1009 + \sqrt{1009^2-4}\big) or x = y = 1 2 ( 1009 100 9 2 4 ) x=y=\tfrac12\big(1009 - \sqrt{1009^2-4}\big) . Similarly, the second expression is S 2 = [ x + x 1 + 1009 ] 2 + [ y + y 1 + 1009 ] 2 2 × 100 9 2 + 2 ( x y y x ) 2 S_2 \; = \; \left[x + x^{-1} + 1009\right]^2 + \left[y +y^{-1} + 1009\right]^2 - 2\times1009^2 + 2\left(\sqrt{\tfrac{x}{y}} - \sqrt{\tfrac{y}{x}}\right)^2 Since x + x 1 2 x + x^{-1} \ge 2 for all x > 0 x > 0 , it is clear that S 2 2 × 101 1 2 2 × 100 9 2 S_2 \ge 2 \times 1011^2 - 2 \times 1009^2 for all x , y > 0 x,y > 0 , with equality when x = y = 1 x=y=1 . This makes the desired answer 2 ( 101 1 2 2 × 100 9 2 ) = 2028082 2\big(1011^2 - 2\times1009^2\big) \; =\; \boxed{-2028082}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...