What's the Area?

Calculus Level 5

Let the diagram above be extended to a regular n n -gon and A j A_{j} , where ( 1 j n ) (1 \leq j \leq n) , be the area of one of the red triangles.

If lim n j = 1 n A j = π ( a 2 + 2 a b 12 b 2 ) \displaystyle \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} A_{j} = \pi(a^2 + 2ab - 12b^2) , find a b \dfrac{a}{b} .

The area of what simple closed curve does j = 1 n A j \displaystyle \sum_{j = 1}^{n} A_{j} converge to?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jul 26, 2018

Let m ( A C B ) = ( n 2 ) 180 n m(\angle{ACB}) = \dfrac{(n - 2)180}{n} be one of the interior angles of the larger n g o n n-gon .

sin ( ( n 2 ) 180 n ) = sin ( 180 360 n ) = sin ( 360 n ) = sin ( 2 π n ) \sin(\dfrac{(n - 2)180}{n}) = \sin(180 - \dfrac{360}{n}) = \sin(\dfrac{360}{n}) = \sin(\dfrac{2\pi}{n}) .

Using the law of sines c sin ( 2 π n ) = a sin ( α ) \implies \dfrac{c}{\sin(\dfrac{2\pi}{n})} = \dfrac{a}{\sin(\alpha)} \implies sin ( α ) = a sin ( 2 π n ) c h = a b sin ( 2 π n ) c \sin(\alpha) = \dfrac{a\sin(\dfrac{2\pi}{n})}{c} \implies h^{*} = \dfrac{ab\sin(\dfrac{2\pi}{n})}{c} \implies j = 1 n A j = n 1 2 ( c ) ( a b sin ( 2 π n ) c ) = n 2 a b sin ( 2 π n ) \sum_{j = 1}^{n} A_{j} = n\dfrac{1}{2}(c)(\dfrac{ab\sin(\dfrac{2\pi}{n})}{c}) = \dfrac{n}{2} ab\sin(\dfrac{2\pi}{n}) .

Using the inequality cos ( x ) < sin ( x ) x < 1 π cos ( π n ) < n 2 sin ( 2 π n ) < π lim n j = 1 n A j = π a b \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \pi\cos(\dfrac{\pi}{n}) < \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) < \pi \implies \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} A_{j} = \boxed{\pi ab} j = 1 n A j \implies \sum_{j = 1}^{n} A_{j} converges to the area of an ellipse.

lim n j = 1 n A j = π a b = π ( a 2 + 2 a b 12 b 2 ) a 2 + a b 12 b 2 = 0 ( a 3 b ) ( a + 4 b ) = 0 \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} A_{j} = \pi ab = \pi(a^2 + 2ab - 12b^2) \implies a^2 + ab - 12b^2 = 0 \implies (a - 3b)(a + 4b) = 0 since a , b > 0 a b = 3 a,b > 0 \implies \dfrac{a}{b} = \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...