What could it be?

Geometry Level 4

a cos B b cos A = a sin A b sin B \large a\cos B-b\cos A=a\sin A-b\sin B

In A B C \triangle ABC , the side lengths across from angles A A , B B and C C are denoted a a , b b and c c respectively.

If the equation above is satisfied, identify the type of triangle for A B C . \triangle ABC.

Obtuse Acute Isoceles and Right-angled Isoceles or right-angled Scalene Equilateral or right-angled

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
May 2, 2016

Use a = 2 R sin A , b = 2 R sin B a=2R\sin A, b=2R\sin B and then cancel 2 R 2R from both sides followed by using sin A cos B cos A sin B = sin ( A B ) \color{#20A900}{\sin A\cos B-\cos A\sin B=\sin (A-B)} in LHS and sin 2 A sin 2 B = sin ( A B ) sin ( A + B ) \color{#D61F06}{\sin^2 A-\sin^2 B=\sin(A-B)\sin(A+B)} in RHS.

sin ( A B ) = sin ( A B ) sin ( A + B ) \sin(A-B)=\sin(A-B)\sin(A+B) sin ( A B ) ( sin ( A + B ) 1 ) = 0 \implies\sin(A-B)(\sin(A+B)-1)=0 sin ( A B ) = 0 OR sin ( A + B ) = 1 \implies \sin(A-B)=0\text{ OR } \sin(A+B)=1

First condition gives A=B (i.e Isosceles triangle) and second condition gives A+B= π 2 \dfrac{\pi}{2} (i.e Right-angled triangle). Thus the correct option is: Isoceles or Right - angled

Using the sine rule,
a sin ( A ) = b sin ( B ) = c sin ( C ) = 2 R \dfrac{a}{\sin(A)} = \dfrac{b}{\sin(B)} = \dfrac{c}{\sin(C)} = 2R where R is the circumradius.

And the cosine rule,
cos ( A ) = b 2 + c 2 a 2 2 b c \cos(A) = \dfrac{b^{2} + c^{2} - a^{2}}{2bc}
a ( a 2 + c 2 b 2 2 a c ) b ( b 2 + c 2 a 2 2 b c ) = a 2 2 R b 2 2 R a \left( \dfrac{a^{2}+c^{2}-b^{2}}{2ac} \right) - b\left( \dfrac{b^{2} + c^{2} - a^{2}}{2bc}\right) = \dfrac{a^{2}}{2R} - \dfrac{b^{2}}{2R}

2 ( a 2 b 2 ) c = a 2 b 2 R \dfrac{2(a^{2}-b^{2})}{c} = \dfrac{a^{2}-b^{2}}{R}
a 2 b 2 = 0 a = b \therefore a^{2}-b^{2} = 0 \to a = b
Or
c 2 R = 1 sin ( C ) = 1 C = 9 0 \dfrac{c}{2R} = 1 \to \sin(C) = 1 \to C = 90^\circ
Thus the triangle is either isoceles or right angled.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...