What does e have to do with this integral?

Calculus Level 5

cos 3 ( x ) 1 + x 2 d x \large \displaystyle \int_{-\infty}^{\infty} \dfrac{\cos ^3 {(x)}}{1+x^2} \, dx

If the value of the integral above equals to π p q ( r e s + t e u ) \dfrac{\pi^p}q \left( \dfrac r{e^s} + \dfrac t{e^u} \right) for positive integers p , q , r , s , t p,q,r,s,t and u u with gcd ( r , q ) = gcd ( t , q ) = 1 \gcd (r, q) = \gcd(t, q) = 1 . Find the value of p + q + r + s + t + u p+q+r+s+t+u .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hasan Kassim
Aug 3, 2015

This Integral can be solved by complex methods with a shorter way than my solution, but I like to solve it using elementary methods:

P r e p o s i t i o n 1 : \mathbf{Preposition \; 1 \; : }

0 1 y e ( a y + b y ) d y = π b e 2 a b \displaystyle \int_0^{\infty} \frac{1}{\sqrt{y}} e^{-(\frac{a}{y} + by ) } dy = \sqrt{\frac{\pi}{b}} e^{-2\sqrt{ab}}

P r o o f : \mathbf{Proof \; : }

A = 0 1 y e ( a y + b y ) d y \displaystyle A= \int_0^{\infty} \frac{1}{\sqrt{y}} e^{-(\frac{a}{y} + by ) } dy

= y a b y a b 0 1 y e a b ( 1 y + y ) d y \displaystyle \overset{{\color{#D61F06}{y \to \sqrt{\frac{a}{b}} y }} }{=} \sqrt{\sqrt{\frac{a}{b}}} \int_0^{\infty} \frac{1}{\sqrt{y}} e^{-\sqrt{ab} ( \frac{1}{y}+y)} dy

= y 1 y a b 0 1 y y e a b ( 1 y + y ) d y \displaystyle \overset{ {\color{#D61F06}{y \to \frac{1}{y} }} }{=}\sqrt{\sqrt{\frac{a}{b}}} \int_0^{\infty} \frac{1}{y\sqrt{y}} e^{-\sqrt{ab} ( \frac{1}{y}+y)} dy

Hence:

2 A = a b 0 ( 1 y + 1 y y ) e a b ( 1 y + y ) d y \displaystyle 2A = \sqrt{\sqrt{\frac{a}{b}}} \int_0^{\infty} \bigg( \frac{1}{\sqrt{y}} + \frac{1}{y\sqrt{y}} \bigg) e^{-\sqrt{ab} ( \frac{1}{y}+y)} dy

A = a b 0 ( 1 2 y + 1 2 y y ) e a b ( y 1 y ) 2 2 a b d y \displaystyle A = \sqrt{\sqrt{\frac{a}{b}}} \int_0^{\infty} \bigg( \frac{1}{2\sqrt{y}} + \frac{1}{2y\sqrt{y}} \bigg) e^{-\sqrt{ab} ( \sqrt{y} - \frac{1}{\sqrt{y}})^2 -2\sqrt{ab} } dy

= y 1 y y a b e a b y 2 2 a b d y \displaystyle \overset{{\color{#D61F06}{\sqrt{y} - \frac{1}{\sqrt{y}} \to y }}}{=} \sqrt{\sqrt{\frac{a}{b}}} \int_{-\infty}^{\infty} e^{-\sqrt{ab}y^2 - 2\sqrt{ab}} dy

This can be derived from the Gaussian Integral :

A = π b e 2 a b \displaystyle \boxed{A = \sqrt{\frac{\pi}{b}} e^{-2\sqrt{ab}} } .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................

P r e p o s i t i o n 2 : \mathbf{Preposition \; 2 \; : }

cos ( m x ) x 2 + 1 d x = π e m \displaystyle \int_{-\infty}^{\infty} \frac{\cos (mx)}{x^2+1} dx = \pi e^{-m}

P r o o f : \mathbf{Proof \; : }

Note that :

1 x 2 + 1 = 0 e ( x 2 + 1 ) y d y \displaystyle \frac{1}{x^2+1} = \int_0^{\infty} e^{-(x^2+1)y} dy

So:

cos ( m x ) x 2 + 1 d x \displaystyle \int_{-\infty}^{\infty} \frac{\cos (mx)}{x^2+1} dx

= 0 cos ( m x ) e ( x 2 + 1 ) y d x d y \displaystyle = \int_0^{\infty} \int_{-\infty}^{\infty} \cos (mx) e^{-(x^2+1)y} dx dy

= 0 e m i x e ( x 2 + 1 ) y d x d y \displaystyle = \Re \int_0^{\infty} \int_{-\infty}^{\infty} e^{mix} e^{-(x^2+1)y} dx dy

= 0 e y x 2 + m i x y d x d y \displaystyle = \Re \int_0^{\infty} \int_{-\infty}^{\infty} e^{-yx^2 +mix -y} dx dy

Now use the formula:

e a x 2 + b x + c d x = π a e b 2 4 a + c \displaystyle \int_{-\infty}^{\infty} e^{-ax^2+bx+c} dx = \sqrt{\frac{\pi}{a} } e^{\frac{b^2}{4a} +c}

Which can be easily proved by the Gaussian Integral . To obtain:

= π 0 1 y e ( m 2 4 y + y ) d y \displaystyle = \sqrt{\pi} \int_0^{\infty} \frac{1}{\sqrt{y}} e^{-(\frac{m^2}{4y} + y)} dy

Now use Preposition 1 with a = m 2 4 and b = 1 a= \frac{m^2}{4} \;\; \text{and} \;\; b= 1 :

= π e m \displaystyle\boxed{ = \pi e^{-m}}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................

Now rewrite our integral as :

cos 3 ( x ) x 2 + 1 d x \displaystyle \int_{-\infty}^{\infty} \frac{\cos^3 (x)}{x^2+1} dx

= 1 4 cos ( 3 x ) + 3 4 cos ( x ) x 2 + 1 d x \displaystyle = \int_{-\infty}^{\infty} \frac{\frac{1}{4} \cos (3x)+ \frac{3}{4} \cos (x)}{x^2+1} dx

= 1 4 cos ( 3 x ) x 2 + 1 d x + 3 4 cos ( x ) x 2 + 1 d x \displaystyle = \frac{1}{4} \int_{-\infty}^{\infty} \frac{\cos (3x)}{x^2+1} dx + \frac{3}{4} \int_{-\infty}^{\infty} \frac{\cos (x)}{x^2+1} dx

= (Use Preposition 2) 1 4 π e 3 + 3 4 π e 1 \displaystyle \overset{{\color{#D61F06}{\text{(Use Preposition 2)}}}}{=} \frac{1}{4} \pi e^{-3} + \frac{3}{4} \pi e^{-1}

= π 1 4 ( 1 e 3 + 3 e 1 ) \displaystyle \boxed{ = \frac{\pi^1}{4} ( \frac{1}{e^3} + \frac{3}{e^1} ) }

Moderator note:

Thanks for sharing your elementary method.

Note that when interchanging the order of integration, you should justify why this can be done. E.g. in this case, because 1 x 2 + 1 d x = tan 1 ( x ) \int \frac{1}{x^2 + 1 } \, dx = \tan^{-1} (x) , we can easily bound the absolute term.

This is a nice method. This question can be solved by using complex analysis or differentiating under the integral too.

Akshay Bodhare - 5 years, 10 months ago

Log in to reply

Can you share the differentiating under the integral method? I'm always intrigued by such approaches. Thanks!

Calvin Lin Staff - 5 years, 10 months ago

I used the complex one! Easiest of 'em all.

Kartik Sharma - 5 years, 10 months ago
Ishan Singh
May 10, 2016

Lemma :

0 cos m x x 2 + a 2 d x = π 2 a e a m \displaystyle \int_{0}^{\infty} \frac{\cos mx}{x^2+a^2} \mathrm{d} x=\frac{\pi}{2a} e^{-am}

Proof :

\text{J}(m) = \displaystyle \int_{0}^{\infty} \dfrac{\cos mx}{x^2+a^2} \mathrm{d} x \tag{1}

Using Integration by parts,

J ( m ) = 0 2 x sin m x m ( x 2 + a 2 ) 2 d x \text{J}(m) = \displaystyle \int_{0}^{\infty} \dfrac{2x\sin mx}{m(x^2+a^2)^2} \mathrm{d} x

\implies m \cdot \text{J}(m) = \displaystyle \int_{0}^{\infty} \dfrac{2x \sin mx}{(x^2+a^2)^2} \mathrm{d} x \tag {2}

Partially Differentiating ( 2 ) (2) w.r.t. m m , we have,

J + m m J = 0 2 x 2 cos ( m x ) ( x 2 + a 2 ) 2 d x = 0 2 cos ( m x ) ( x 2 + a 2 ) d x 2 a 2 0 cos m x ( x 2 + a 2 ) 2 d x \text{J} + m\dfrac{\partial}{\partial m} \text{J} = \displaystyle \int_{0}^{\infty} \dfrac {2x^2\cos(mx)}{(x^2+a^2)^2} \mathrm{d}x = \displaystyle \int_{0}^{\infty} \dfrac {2\cos(mx)}{(x^2+a^2)} \mathrm{d}x - 2a^2\displaystyle \int_{0}^{\infty}\dfrac{\cos mx}{(x^2+a^2)^2} \mathrm{d}x

\implies a\dfrac{\partial}{\partial m} \text{J} = \text{J} - 2b^2\displaystyle \int_{0}^{\infty}\dfrac{\cos mx}{(x^2+a^2)^2} \mathrm{d}x \tag{3}

Again, partially differentiating ( 3 ) (3) w.r.t. m m , we have,

m 2 m 2 J = a 2 0 2 x sin m x ( x 2 + a 2 ) 2 d x m\dfrac{\partial^2}{\partial m^2} \text{J} = a^2 \displaystyle \int_{0}^{\infty} \dfrac{2x \sin mx}{(x^2+a^2)^2} \mathrm{d} x

\implies \dfrac{\partial^2}{\partial m^2} \text{J} = a^2 \text{J} \tag{*} (from ( 2 ) (2) )

Note that J ( 0 ) = π 2 a \text{J}(0) = \dfrac{\pi}{2a} and J ( ) = 0 \text{J}(\infty) = 0

Now, solving ( ) (*) , we have,

J ( m ) = π 2 a e a m \text{J}(m) = \dfrac{\pi}{2a} e^{-am} \quad \square

Now,

I = cos 3 ( x ) x 2 + 1 d x = 2 0 cos 3 ( x ) x 2 + 1 d x \displaystyle \text{I} = \int_{-\infty}^{\infty} \dfrac{\cos^3 (x)}{x^2+1} \mathrm{d}x = 2 \int_{0}^{\infty} \dfrac{\cos^3 (x)}{x^2+1} \mathrm{d}x

= 1 2 0 cos ( 3 x ) x 2 + 1 d x + 3 2 0 cos ( x ) x 2 + 1 d x \displaystyle = \dfrac{1}{2} \int_{0}^{\infty} \frac{\cos (3x)}{x^2+1} \mathrm{d}x + \dfrac{3}{2} \int_{0}^{\infty} \dfrac{\cos (x)}{x^2+1} \mathrm{d}x

Using the Lemma, we have,

I = π 4 e 3 + 3 π 4 e \displaystyle \text{I} = \dfrac{\pi}{4e^3} + \dfrac{3 \pi}{4e}

p + q + r + s + t + u = 13 \implies p+q+r+s+t+u = \boxed{13}

@Ishan Singh Thanks! I've converted your comment into a solution :)

Calvin Lin Staff - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...