∫ − ∞ ∞ 1 + x 2 cos 3 ( x ) d x
If the value of the integral above equals to q π p ( e s r + e u t ) for positive integers p , q , r , s , t and u with g cd ( r , q ) = g cd ( t , q ) = 1 . Find the value of p + q + r + s + t + u .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thanks for sharing your elementary method.
Note that when interchanging the order of integration, you should justify why this can be done. E.g. in this case, because ∫ x 2 + 1 1 d x = tan − 1 ( x ) , we can easily bound the absolute term.
This is a nice method. This question can be solved by using complex analysis or differentiating under the integral too.
Log in to reply
Can you share the differentiating under the integral method? I'm always intrigued by such approaches. Thanks!
I used the complex one! Easiest of 'em all.
Lemma :
∫ 0 ∞ x 2 + a 2 cos m x d x = 2 a π e − a m
Proof :
\text{J}(m) = \displaystyle \int_{0}^{\infty} \dfrac{\cos mx}{x^2+a^2} \mathrm{d} x \tag{1}
Using Integration by parts,
J ( m ) = ∫ 0 ∞ m ( x 2 + a 2 ) 2 2 x sin m x d x
\implies m \cdot \text{J}(m) = \displaystyle \int_{0}^{\infty} \dfrac{2x \sin mx}{(x^2+a^2)^2} \mathrm{d} x \tag {2}
Partially Differentiating ( 2 ) w.r.t. m , we have,
J + m ∂ m ∂ J = ∫ 0 ∞ ( x 2 + a 2 ) 2 2 x 2 cos ( m x ) d x = ∫ 0 ∞ ( x 2 + a 2 ) 2 cos ( m x ) d x − 2 a 2 ∫ 0 ∞ ( x 2 + a 2 ) 2 cos m x d x
\implies a\dfrac{\partial}{\partial m} \text{J} = \text{J} - 2b^2\displaystyle \int_{0}^{\infty}\dfrac{\cos mx}{(x^2+a^2)^2} \mathrm{d}x \tag{3}
Again, partially differentiating ( 3 ) w.r.t. m , we have,
m ∂ m 2 ∂ 2 J = a 2 ∫ 0 ∞ ( x 2 + a 2 ) 2 2 x sin m x d x
\implies \dfrac{\partial^2}{\partial m^2} \text{J} = a^2 \text{J} \tag{*} (from ( 2 ) )
Note that J ( 0 ) = 2 a π and J ( ∞ ) = 0
Now, solving ( ∗ ) , we have,
J ( m ) = 2 a π e − a m □
Now,
I = ∫ − ∞ ∞ x 2 + 1 cos 3 ( x ) d x = 2 ∫ 0 ∞ x 2 + 1 cos 3 ( x ) d x
= 2 1 ∫ 0 ∞ x 2 + 1 cos ( 3 x ) d x + 2 3 ∫ 0 ∞ x 2 + 1 cos ( x ) d x
Using the Lemma, we have,
I = 4 e 3 π + 4 e 3 π
⟹ p + q + r + s + t + u = 1 3
@Ishan Singh Thanks! I've converted your comment into a solution :)
Problem Loading...
Note Loading...
Set Loading...
This Integral can be solved by complex methods with a shorter way than my solution, but I like to solve it using elementary methods:
P r e p o s i t i o n 1 :
∫ 0 ∞ y 1 e − ( y a + b y ) d y = b π e − 2 a b
P r o o f :
A = ∫ 0 ∞ y 1 e − ( y a + b y ) d y
= y → b a y b a ∫ 0 ∞ y 1 e − a b ( y 1 + y ) d y
= y → y 1 b a ∫ 0 ∞ y y 1 e − a b ( y 1 + y ) d y
Hence:
2 A = b a ∫ 0 ∞ ( y 1 + y y 1 ) e − a b ( y 1 + y ) d y
A = b a ∫ 0 ∞ ( 2 y 1 + 2 y y 1 ) e − a b ( y − y 1 ) 2 − 2 a b d y
= y − y 1 → y b a ∫ − ∞ ∞ e − a b y 2 − 2 a b d y
This can be derived from the Gaussian Integral :
A = b π e − 2 a b .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P r e p o s i t i o n 2 :
∫ − ∞ ∞ x 2 + 1 cos ( m x ) d x = π e − m
P r o o f :
Note that :
x 2 + 1 1 = ∫ 0 ∞ e − ( x 2 + 1 ) y d y
So:
∫ − ∞ ∞ x 2 + 1 cos ( m x ) d x
= ∫ 0 ∞ ∫ − ∞ ∞ cos ( m x ) e − ( x 2 + 1 ) y d x d y
= ℜ ∫ 0 ∞ ∫ − ∞ ∞ e m i x e − ( x 2 + 1 ) y d x d y
= ℜ ∫ 0 ∞ ∫ − ∞ ∞ e − y x 2 + m i x − y d x d y
Now use the formula:
∫ − ∞ ∞ e − a x 2 + b x + c d x = a π e 4 a b 2 + c
Which can be easily proved by the Gaussian Integral . To obtain:
= π ∫ 0 ∞ y 1 e − ( 4 y m 2 + y ) d y
Now use Preposition 1 with a = 4 m 2 and b = 1 :
= π e − m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Now rewrite our integral as :
∫ − ∞ ∞ x 2 + 1 cos 3 ( x ) d x
= ∫ − ∞ ∞ x 2 + 1 4 1 cos ( 3 x ) + 4 3 cos ( x ) d x
= 4 1 ∫ − ∞ ∞ x 2 + 1 cos ( 3 x ) d x + 4 3 ∫ − ∞ ∞ x 2 + 1 cos ( x ) d x
= (Use Preposition 2) 4 1 π e − 3 + 4 3 π e − 1
= 4 π 1 ( e 3 1 + e 1 3 )