What does it 'Mean'?

We have a set of interest, S S ={ 1 , 2 , 3 , . . . . , 1000 1,2,3,....,1000 }. Find the arithmetic mean of the smallest elements, F ( 1000 , 90 ) F(1000,90) of subsets of S of cardinality 90.

For example, if we take a set A A ={ 1 , 2 , 3 , 4 1,2,3,4 }, the subsets of A A of cardinality 2 are { 1 , 2 1,2 }; { 1 , 3 1,3 };{ 1 , 4 1,4 }; { 2 , 3 2,3 }; { 2 , 4 2,4 }; { 3 , 4 3,4 }. F ( 4 , 2 ) F(4,2) = 3 × 1 + 2 × 2 + 1 × 3 1 + 2 + 3 \frac{3×1+2×2+1×3}{1+2+3} = 5 3 \frac{5}{3}


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alapan Das
May 16, 2019

F ( n , r ) = A / B F(n,r)=A/B A = 1 × [ ( n 1 ) C ( r 1 ) ] + 2 × [ ( n 2 ) C ( r 1 ) ] + . . . ( n r + 1 ) × [ ( r 1 ) C ( r 1 ) = ( n + 1 ) / ( r + 1 ) ( n C r ) A={1×[(n-1)C(r-1)]+2×[(n-2)C(r-1)]+...(n-r+1)×[(r-1)C(r-1)}={(n+1)/(r+1)}(nCr)

B = [ ( n 1 ) C ( r 1 ) ] + [ ( n 2 ) C ( r 1 ) + . . . . . . . . . . . . + [ ( r 1 ) C ( r 1 ) ] = n C r B=[(n-1)C(r-1)]+[(n-2)C(r-1)+............+[(r-1)C(r-1)]=nCr

A / B = n + 1 r + 1 A/B=\frac{n+1}{r+1} . In the given question n = 1000 , r = 90 n=1000, r=90 . F ( 1000 , 90 ) = 1001 / 91 = 11 F(1000,90)=1001/91=11 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...