Why does one trigonometry problem matter

Geometry Level 2

Given that U n = 2 cos n θ U_n=2\cos n\theta

Find the value of U 1 U n U n 1 U_1U_n-U_{n-1}

U n U_n U n + 2 U_{n+2} U n + 1 U_{n+1} U n U_{-n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 18, 2015

U 1 U n U n 1 = 2 cos θ ( 2 cos n θ ) 2 cos ( [ n 1 ] θ ) = 4 cos θ cos n θ 2 ( cos n θ cos θ + sin n θ sin θ ) = 2 cos n θ cos θ 2 sin n θ sin θ = 2 cos ( [ n + 1 ] θ ) = U n + 1 \begin{aligned} U_1U_n - U_{n-1} & = 2\cos{\theta} (2 \cos{n\theta} ) - 2 \cos{([n-1]\theta)} \\ & = 4\cos{\theta} \cos{n\theta} - 2( \cos{n\theta} \cos{\theta} + \sin{n\theta} \sin{\theta}) \\ & = 2\cos{n\theta} \cos{\theta} - 2\sin{n\theta} \sin{\theta} \\ & = 2\cos{([n+1]\theta)} \\ & = \boxed{U_{n+1}} \end{aligned}

Moderator note:

Bonus question : Prove that U 2 n = 2 U n 2 1 U_{2n} = 2U_n^2 - 1 and U 3 n = 4 U n 3 3 U n U_{3n} = 4U_n ^3 - 3U_n . Does these formulas look familiar?

In response to challenger master note: These are the angle half formulas i.e. cos2A and cos3A

Abhay Tiwari - 5 years, 10 months ago

I don't get the proofs.

U 2 n = 2 cos 2 n θ = 2 ( 2 cos 2 n θ 1 ) = U n 2 2 = U n 2 U 0 U 3 n = 2 cos 3 n θ = 2 ( 4 cos 3 n θ 3 cos n θ ) = U n 3 3 U n \begin{aligned} U_{2n} & = 2\cos{2n\theta} = 2(2\cos^2{n\theta} -1) = U_n^2 - 2 = U_n^2 -U_0 \\ U_{3n} & = 2\cos{3n\theta} = 2(4\cos^3{n\theta}-3\cos{n\theta}) = U_n^3 - 3U_n \end{aligned}

Chew-Seong Cheong - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...