where are positive integers and Find
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Before we evaluate the integral, let us first notice the following propositions which would help us to evaluate the given integral.
Proposition 1 : n = 1 ∑ ∞ H n x n = − 1 − x ln ( 1 − x ) ; for ∣ x ∣ < 1 , where H n is the n -th harmonic number .
Proof :
Since H n − H n − 1 = n 1 for n ∈ Z + , then multiplying both sides by x n yields H n x n − H n − 1 x n n = 1 ∑ ∞ H n x n − n = 1 ∑ ∞ H n − 1 x n n = 1 ∑ ∞ H n x n − x n = 1 ∑ ∞ H n − 1 x n − 1 ( 1 − x ) n = 1 ∑ ∞ H n x n = n x n = n = 1 ∑ ∞ n x n = − ln ( 1 − x ) = − ln ( 1 − x ) Q.E.D. where H 0 = 0 , and H 1 = 1 .
Proposition 2 : n = 1 ∑ ∞ n 3 H n = 7 2 π 4 . Proof :
We have H n = m = 1 ∑ ∞ ( m 1 − m + n 1 ) = m = 1 ∑ ∞ m ( m + n ) n . Therefore n = 1 ∑ ∞ n 3 H n = m , n ≥ 1 ∑ n 2 m ( m + n ) 1 = m , n ≥ 1 ∑ m 2 n ( n + m ) 1 . Taking the half sum we obtain n = 1 ∑ ∞ n 3 H n = 2 1 m , n ≥ 1 ∑ m n ( m + n ) 1 ( m 1 + n 1 ) = 2 1 m , n ≥ 1 ∑ m 2 n 2 1 = 2 1 ζ 2 ( 2 ) = 2 1 ( 6 π 2 ) 2 Q.E.D.
Proposition 3 : ∫ 0 1 x α ln n x d x = ( α + 1 ) n + 1 ( − 1 ) n n ! , for n = 0 , 1 , 2 , …
Proof :
Note that ∫ 0 1 x α d x = α + 1 1 , for α > − 1 . Differentiating n times yields ∫ 0 1 ∂ α n ∂ n ( x α ) d x = ∫ 0 1 x α ln n x d x = ( α + 1 ) n + 1 ( − 1 ) n n ! , for n = 0 , 1 , 2 , … Q.E.D.
Now, we will evaluate the given integral. Using the property ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x and also the previous propositions, then the given integral turns out to be ∫ 0 1 x ln x ln 2 ( 1 − x ) d x = ∫ 0 1 1 − x ln ( 1 − x ) ln 2 x d x = − ∫ 0 1 n = 1 ∑ ∞ H n x n ln 2 x d x = − n = 1 ∑ ∞ H n ∫ 0 1 x n ln 2 x d x = − 2 n = 1 ∑ ∞ ( n + 1 ) 3 H n = − 2 n = 1 ∑ ∞ ( n + 1 ) 3 1 ( H n + 1 − n + 1 1 ) = 2 [ n = 1 ∑ ∞ ( n + 1 ) 4 1 − n = 1 ∑ ∞ ( n + 1 ) 3 H n + 1 ] = 2 [ n = 1 ∑ ∞ n 4 1 − n = 1 ∑ ∞ n 3 H n ] = 2 [ ζ ( 4 ) − 7 2 π 4 ] = 2 [ 9 0 π 4 − 7 2 π 4 ] = − 1 8 0 π 4 . Thus, a + b + c = 1 + 4 + 1 8 0 = 1 8 5 .