What does this add up to?

Algebra Level 2

1 + 2 + 3 + + 100000 = ? 1+2+3+\cdots+100 000 = \, ?


The answer is 5000050000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Arulx Z
Feb 26, 2016

1 + 2 + 3 + + n = n ( n + 1 ) 2 1+2+3+\dots +n=\frac { n\left( n+1 \right) }{ 2 }

On plugging 100000 into n n ,

1 + 2 + 3 + + 100000 = 100000 ( 100001 ) 2 = 5000050000 1+2+3+\dots +100000=\frac { 100000\left( 100001 \right) }{ 2 } =5000050000

Moderator note:

How do we know the first equation is true?

Nice solution

Joel Casero - 5 years, 3 months ago

Log in to reply

Thanks a lot :)

Arulx Z - 5 years, 3 months ago

How do we know the first equation is true?

Calvin Lin Staff - 5 years, 3 months ago

Log in to reply

S = 1 + 2 + 3 + + n S = n + ( n 1 ) + ( n 2 ) + + 1 2 S = ( n + 1 ) + ( n + 1 ) + ( n + 1 ) + + ( n + 1 ) \begin{matrix} S & = & 1 & + & 2 & + & 3 & + & \dots & + & n \\ S & = & n & + & \left( n-1 \right) & + & \left( n-2 \right) & + & \dots & + & 1 \\ 2S & = & \left( n+1 \right) & + & \left( n+1 \right) & + & \left( n+1 \right) & + & \dots & + & \left( n+1 \right) \end{matrix}

2 S = n ( n + 1 ) S = n ( n + 1 ) 2 2S=n\left( n+1 \right) \\ S=\frac { n\left( n+1 \right) }{ 2 }

Arulx Z - 5 years, 3 months ago
Joel Casero
Feb 24, 2016

50 000[1+100 000] = 50 000[100 001] = 5 000 050 000

It is an arithmetic progression with d = 1 , n = 100000 , a 1 = 1 d=1, n=100000, a_1=1 and a n = 100000 a_n=100000 .

So the sum of terms is

s = n 2 ( a 1 + a n ) = 100000 2 ( 1 + 100000 ) = 5000050000 s=\dfrac{n}{2}(a_1+a_n)=\dfrac{100000}{2}(1+100000)=\large{\color{#69047E}\boxed{5000050000}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...