What happened to 3 π / 9 3\pi/9 ?

Geometry Level 5

f ( x ) = 8 ( x cos π 9 ) ( x cos 5 π 9 ) ( x cos 7 π 9 ) \large{f(x)=8\left(x-\cos \frac{\pi}{9}\right)\left(x-\cos\frac{5\pi}{9}\right)\left(x-\cos \frac{7\pi}{9}\right)} Find f ( 0 ) + f ( 1 ) + f ( 10 ) f(0)+f(1)+f(10) .


The answer is 7939.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Arturo Presa
Jun 23, 2016

Let w 1 = e π i / 9 , w_1=e^{\pi i/9}, w 2 = e 3 π i / 9 , w_2=e^{3\pi i/9}, w 3 = e 5 π i / 9 , w_3=e^{5\pi i/9}, and w 4 = e 7 π i / 9 . w_4=e^{7\pi i/9}. Then the numbers w 1 , w 2 , w 3 , w 4 , w 1 , w 2 , w 3 , w 4 w_1, w_2, w_3, w_4, \overline{w_1}, \overline{w_2}, \overline{w_3}, \overline{w_4} , and -1 are the roots of the polynomial x 9 + 1. x^9+1. Therefore, x 9 + 1 = ( x + 1 ) ( x 8 x 7 + x 6 x 5 + x 4 x 3 + x 2 x + 1 ) = = ( x + 1 ) ( x w 1 ) ( x w 1 ) ( x w 2 ) ( x w 2 ) ( x w 3 ) ( x w 3 ) ( x w 4 ) ( x w 4 ) . \begin{aligned} x^9+1=(x+1)(x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1)=\\ =(x+1)(x-w_1)(x-\overline{w_1})(x-w_2)(x-\overline{w_2})(x-w_3)(x-\overline{w_3})(x-w_4)(x-\overline{w_4})\end{aligned}. Dividing both sides by x + 1 x+1 and taking into consideration that ( x w j ) ( x w j ) = x 2 2 cos ( 2 j 1 ) π 9 x + 1 , (x-w_j)(x-\overline{w_j})=x^2-2\cos{ \frac{(2j-1)\pi} {9}} x+1, for j { 1 , 2 , 3 , 4 } , j\in \{1,2,3,4\}, we obtain that x 8 x 7 + x 6 x 5 + x 4 x 3 + x 2 x + 1 = = j = 1 4 ( x 2 2 cos ( 2 j 1 ) π 9 x + 1 ) . x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1=\\ =\prod_{j=1}^4 (x^2-2\cos{\frac{(2j-1)\pi} {9}} x+1). Making the coefficients of x x in this equality equal, and using that cos ( 3 π / 9 ) = cos ( π / 3 ) = 1 2 , \cos(3\pi /9)=\cos(\pi/3)=\frac{1}{2}, we get the equality cos ( π 9 ) + cos ( 5 π 9 ) + cos ( 7 π 9 ) = 0. ( ) \cos(\frac{\pi}{9})+\cos(\frac{5\pi}{9})+\cos(\frac{7\pi}{9})=0. \:\:\:\:(*)

In a similar way, making the coefficients of x 2 x^2 and x 4 x^4 equal, respectively, and considering again that cos ( 3 π / 9 ) = 1 2 , \cos(3\pi /9)=\frac{1}{2}, we obtain the equalities

cos ( π 9 ) cos ( 5 π 9 ) + cos ( 7 π 9 ) cos ( 5 π 9 ) + cos ( π 9 ) cos ( 7 π 9 ) = 3 4 ( ) \cos(\frac{\pi}{9})\cos(\frac{5\pi}{9})+\cos(\frac{7\pi}{9})\cos(\frac{5\pi}{9})+\cos(\frac{\pi}{9})\cos(\frac{7\pi}{9})=-\frac{3}{4} \:\:\:\:(**) and cos ( π 9 ) cos ( 5 π 9 ) cos ( 7 π 9 ) = 1 8 . ( ) \cos(\frac{\pi}{9})\cos(\frac{5\pi}{9})\cos(\frac{7\pi}{9})=\frac{1}{8}.\:\:\:\:(***) Now, using ( ) , ( ) (*), (**) and ( ) (***) and Vieta's Formulas, we get that f ( x ) = 8 x 3 6 x 1. f(x)= 8x^3-6x-1. Therefore, f ( 0 ) + f ( 1 ) + f ( 10 ) = 7939 . f(0)+f(1)+f(10)=\boxed{7939}.

Chew-Seong Cheong
Jun 23, 2016

Let a = cos π 9 a = \cos \dfrac \pi 9 , b = cos 5 π 9 b = \cos \dfrac {5\pi} 9 and c = cos 7 π 9 c = \cos \dfrac {7\pi} 9 . Then, we have:

f ( x ) = 8 ( x cos π 9 ) ( x cos 5 π 9 ) ( x cos 7 π 9 ) = 8 ( x a ) ( x b ) ( x c ) = 8 ( x 3 ( a + b + c ) x 2 + ( a b + b c + c a ) x a b c ) See Note. = 8 ( x 3 ( 0 ) x 2 + ( 3 4 ) x 1 8 ) = 8 x 3 6 x 1 \begin{aligned} f(x) & = 8 \left(x-\cos \frac \pi 9 \right) \left(x-\cos \frac {5\pi} 9 \right) \left(x-\cos \frac {7\pi} 9 \right) \\ & = 8 \left(x-a \right) \left(x-b \right) \left(x-c \right) \\ & = 8\left(x^3 - (\color{#3D99F6}{a+b+c})x^2 + (\color{#3D99F6}{ab+bc+ca})x -\color{#3D99F6}{abc} \right) \quad \quad \small \color{#3D99F6}{\text{See Note.}} \\ & = 8\left(x^3 - (\color{#3D99F6}{0})x^2 + \left(\color{#3D99F6}{-\frac 34}\right)x -\color{#3D99F6}{\frac 18} \right) \\ & = 8x^3 - 6x -1 \end{aligned}

f ( 0 ) + f ( 1 ) + f ( 10 ) = 1 + 1 + 8000 60 1 = 7939 \begin{aligned} \implies f(0) + f(1) + f(10) & = -1 + 1 + 8000 - 60 - 1 = \boxed{7939} \end{aligned}


Note: \color{#3D99F6}{\text{Note:}}

cos π 9 + cos 3 π 9 + cos 5 π 9 + cos 7 π 9 = 1 2 a + 1 2 + b + c = 1 2 a + b + c = 0 \begin{aligned} \cos \frac \pi 9 + \cos \frac {3\pi} 9 + \cos \frac {5\pi} 9 + \cos \frac {7\pi} 9 & = \frac 12 \\ \implies a + \frac 12 + b + c & = \frac 12 \\ \color{#3D99F6}{\implies a + b + c} & \color{#3D99F6}{= 0} \end{aligned}

a 2 + b 2 + c 2 = 2 ( a b + b c + c a ) cos 2 π 9 + cos 2 5 π 9 + cos 2 7 π 9 = 1 2 ( cos 2 π 9 + cos 10 π 9 + cos 14 π 9 + 3 ) = 1 2 ( cos 7 π 9 cos 1 π 9 cos 5 π 9 + 3 ) = 1 2 ( 0 + 3 ) = 3 2 a b + b c + c a = 3 4 \begin{aligned} \implies a^2+b^2+c^2 & = -2(ab+bc+ca) \\ \cos^2 \frac \pi 9 + \cos^2 \frac {5\pi} 9 + \cos^2 \frac {7\pi} 9 & = \frac 12 \left(\cos \frac {2\pi} 9 + \cos \frac {10\pi} 9 + \cos \frac {14\pi} 9+3 \right) \\ & = \frac 12 \left(-\cos \frac {7\pi} 9 - \cos \frac {1\pi} 9 - \cos \frac {5\pi} 9+3 \right) \\ & = \frac 12 \left(-0+3 \right) = \frac 32 \\ \color{#3D99F6}{\implies ab+bc+ca} & \color{#3D99F6}{ = - \frac 34} \end{aligned}

a b c = cos π 9 cos 5 π 9 cos 7 π 9 = cos π 9 cos 4 π 9 cos 2 π 9 = sin π 9 cos π 9 cos 2 π 9 cos 4 π 9 sin π 9 = sin 2 π 9 cos 2 π 9 cos 4 π 9 2 sin π 9 = sin 4 π 9 cos 4 π 9 4 sin π 9 = sin 8 π 9 8 sin π 9 = sin π 9 8 sin π 9 a b c = 1 8 \begin{aligned} abc & = \cos \frac \pi 9 \cos \frac {5\pi} 9 \cos \frac {7\pi} 9 = \cos \frac \pi 9 \cos \frac {4\pi} 9 \cos \frac {2\pi} 9 \\ & = \frac {\sin \frac \pi 9 \cos \frac \pi 9 \cos \frac {2\pi} 9 \cos \frac {4\pi} 9}{\sin \frac \pi 9} = \frac {\sin \frac {2\pi} 9 \cos \frac {2\pi} 9 \cos \frac {4\pi} 9}{2\sin \frac \pi 9} \\ & = \frac {\sin \frac {4\pi} 9 \cos \frac {4\pi} 9}{4\sin \frac \pi 9} = \frac {\sin \frac {8\pi} 9}{8\sin \frac \pi 9} = \frac {\sin \frac \pi 9}{8\sin \frac \pi 9} \\ \color{#3D99F6}{\implies abc} & \color{#3D99F6}{ = \frac 18} \end{aligned}

Sir could you please explain how in the note the sum is 1/2

Abhisek Mohanty - 4 years, 11 months ago
Hung Woei Neoh
Jul 3, 2016

f ( x ) = 8 ( x cos π 9 ) ( x cos 5 π 9 ) ( x cos 7 π 9 ) = 8 ( x cos 2 0 ) ( x cos 10 0 ) ( x cos 14 0 ) = 8 ( x 2 x cos 2 0 x cos 10 0 + cos 2 0 cos 10 0 ) ( x cos 14 0 ) = 8 ( x 3 x 2 cos 2 0 x 2 cos 10 0 + x cos 2 0 cos 10 0 x 2 cos 14 0 + x cos 2 0 cos 14 0 + x cos 10 0 cos 14 0 cos 2 0 cos 10 0 cos 14 0 ) = 8 x 3 8 ( cos 2 0 + cos 10 0 + cos 14 0 ) x 2 + 8 ( cos 2 0 cos 10 0 + cos 2 0 cos 14 0 + cos 10 0 cos 14 0 ) x 8 cos 2 0 cos 10 0 cos 14 0 f(x) = 8\left(x-\cos\dfrac{\pi}{9}\right)\left(x-\cos\dfrac{5\pi}{9}\right)\left(x-\cos\dfrac{7\pi}{9}\right)\\ =8\left(x-\cos20^{\circ}\right)\left(x-\cos100^{\circ}\right)\left(x-\cos140^{\circ}\right)\\ =8\left(x^2-x\cos20^{\circ}-x\cos100^{\circ}+\cos20^{\circ}\cos100^{\circ}\right)\left(x-\cos140^{\circ}\right)\\ =8\left(x^3-x^2\cos20^{\circ}-x^2\cos100^{\circ}+x\cos20^{\circ}\cos100^{\circ}-x^2\cos140^{\circ}+x\cos20^{\circ}\cos140^{\circ}+x\cos100^{\circ}\cos140^{\circ}\\-\cos20^{\circ}\cos100^{\circ}\cos140^{\circ}\right)\\ =8x^3-\color{#3D99F6}{8(\cos20^{\circ}+\cos100^{\circ}+\cos140^{\circ})}x^2+\color{#D61F06}{8(\cos20^{\circ}\cos100^{\circ}+\cos20^{\circ}\cos140^{\circ}+\cos100^{\circ}\cos140^{\circ})}x \\-\color{#EC7300}{8\cos20^{\circ}\cos100^{\circ}\cos140^{\circ}}

From here on, I will only use these tools:

  1. Product to sum trigonometric formula : 2 cos A cos B = cos ( A + B ) + cos ( A B ) \color{#20A900}{2\cos A\cos B=\cos(A+B) +\cos(A-B)}
  2. cos 6 0 = 1 2 \color{magenta}{\cos 60^{\circ} = \dfrac{1}{2}}
  3. For angles 9 0 < x < 18 0 90^{\circ} < x < 180^{\circ} , cos x = cos ( 18 0 x ) \color{#69047E}{\cos x = -\cos(180^{\circ}-x)}
  4. For angles 18 0 < x < 27 0 180^{\circ} < x < 270^{\circ} , cos x = cos ( x 18 0 ) \color{#624F41}{\cos x = -\cos(x-180^{\circ})}

We now proceed to determine the values of the coefficients:

8 ( cos 2 0 + cos 10 0 + cos 14 0 ) = 8 ( cos ( 6 0 4 0 ) + cos ( 6 0 + 4 0 ) + cos 14 0 ) = 8 ( 2 cos 6 0 cos 4 0 + cos 14 0 ) = 8 ( 2 ( 1 2 ) cos 4 0 + ( cos ( 18 0 14 0 ) ) ) = 8 ( cos 4 0 cos 4 0 ) = 8 ( 0 ) = 0 \color{#3D99F6}{8(\cos20^{\circ}+\cos100^{\circ}+\cos140^{\circ})}\\ =8(\color{#20A900}{\cos(60^{\circ}-40^{\circ})+\cos(60^{\circ}+40^{\circ})}+\cos140^{\circ})\\ =8(\color{#20A900}{2\cos60^{\circ}\cos40^{\circ}}+\cos140^{\circ})\\ =8(2\left(\color{magenta}{\dfrac{1}{2}}\right)\cos40^{\circ} +(\color{#69047E}{-\cos(180^{\circ}-140^{\circ})}))\\ =8(\cos40^{\circ}-\cos40^{\circ})\\ =8(0)\\ =\color{#3D99F6}{0}

8 ( cos 2 0 cos 10 0 + cos 2 0 cos 14 0 + cos 10 0 cos 14 0 ) = 4 ( 2 cos 2 0 cos 10 0 + 2 cos 2 0 cos 14 0 + 2 cos 10 0 cos 14 0 ) = 4 ( cos 8 0 + cos 12 0 + cos 12 0 + cos 16 0 + cos 4 0 + cos 24 0 ) = 4 ( cos ( 6 0 + 2 0 ) cos 6 0 cos 6 0 + cos 16 0 + cos ( 6 0 2 0 ) cos 6 0 ) = 4 ( 2 cos 6 0 cos 2 0 + cos 16 0 3 cos 6 0 ) = 4 ( 2 ( 1 2 ) cos 2 0 cos 2 0 3 ( 1 2 ) ) = 4 ( cos 2 0 cos 2 0 3 2 ) = 4 ( 3 2 ) = 6 \color{#D61F06}{8(\cos20^{\circ}\cos100^{\circ}+\cos20^{\circ}\cos140^{\circ}+\cos100^{\circ}\cos140^{\circ})}\\ =4(\color{#20A900}{2\cos20^{\circ}\cos100^{\circ}}+\color{#20A900}{2\cos20^{\circ}\cos140^{\circ}}+\color{#20A900}{2\cos100^{\circ}\cos140^{\circ}})\\ =4(\color{#20A900}{\cos80^{\circ}+\cos120^{\circ}}+\color{#20A900}{\cos120^{\circ}+\cos160^{\circ}}+\color{#20A900}{\cos40^{\circ}+\cos240^{\circ}})\\ =4(\color{#20A900}{\cos(60^{\circ}+20^{\circ})}\color{#69047E}{-\cos60^{\circ}-\cos60^{\circ}}+\cos160^{\circ}+\color{#20A900}{\cos(60^{\circ}-20^{\circ})}\color{#624F41}{-\cos60^{\circ}})\\ =4(\color{#20A900}{2\cos60^{\circ}\cos20^{\circ}}+\cos160^{\circ}-3\color{magenta}{\cos60^{\circ}})\\ =4(2\left(\color{magenta}{\dfrac{1}{2}}\right)\cos20^{\circ} \color{#69047E}{-\cos20^{\circ}}-3\left(\color{magenta}{\dfrac{1}{2}}\right))\\ =4(\cos20^{\circ}-\cos20^{\circ}-\dfrac{3}{2})\\ =4\left(-\dfrac{3}{2}\right)\\ =\color{#D61F06}{-6}

8 cos 2 0 cos 10 0 cos 14 0 = 4 ( 2 cos 2 0 cos 10 0 ) cos 14 0 = 4 cos 14 0 ( cos 8 0 + cos 12 0 ) = 2 ( 2 cos 8 0 cos 14 0 + 2 cos 14 0 ( cos 6 0 ) ) = 2 ( cos 6 0 + cos 22 0 2 cos 14 0 ( 1 2 ) ) = 2 ( 1 2 cos 4 0 ( cos 4 0 ) ) = 1 + 2 ( cos 4 0 + cos 4 0 ) = 1 \color{#EC7300}{8\cos20^{\circ}\cos100^{\circ}\cos140^{\circ}}\\ =4(\color{#20A900}{2\cos20^{\circ}\cos100^{\circ}})\cos140^{\circ}\\ =4\cos140^{\circ}(\color{#20A900}{\cos80^{\circ}+\cos120^{\circ}})\\ =2(\color{#20A900}{2\cos80^{\circ}\cos140^{\circ}}+2\cos140^{\circ}(\color{#69047E}{-\cos60^{\circ}}))\\ =2(\color{#20A900}{\cos60^{\circ}+\cos220^{\circ}}-2\cos140^{\circ}\left(\color{magenta}{\dfrac{1}{2}}\right))\\ =2(\color{magenta}{\dfrac{1}{2}}\color{#624F41}{-\cos40^{\circ}}-(\color{#69047E}{-\cos40^{\circ}}))\\ =1+2(-\cos40^{\circ}+\cos40^{\circ})\\ =\color{#EC7300}{1}

Substitute the found values into f ( x ) f(x) :

f ( x ) = 8 x 3 8 ( cos 2 0 + cos 10 0 + cos 14 0 ) x 2 + 8 ( cos 2 0 cos 10 0 + cos 2 0 cos 14 0 + cos 10 0 cos 14 0 ) x 8 cos 2 0 cos 10 0 cos 14 0 = 8 x 3 0 x 2 + ( 6 ) x 1 = 8 x 3 6 x 1 f(x) = 8x^3-\color{#3D99F6}{8(\cos20^{\circ}+\cos100^{\circ}+\cos140^{\circ})}x^2+\color{#D61F06}{8(\cos20^{\circ}\cos100^{\circ}+\cos20^{\circ}\cos140^{\circ}+\cos100^{\circ}\cos140^{\circ})}x\\ -\color{#EC7300}{8\cos20^{\circ}\cos100^{\circ}\cos140^{\circ}}\\ =8x^3-\color{#3D99F6}{0}x^2+(\color{#D61F06}{-6})x -\color{#EC7300}{1}\\ =8x^3-6x-1

f ( 0 ) = 8 ( 0 ) 3 6 ( 0 ) 1 = 1 f ( 1 ) = 8 ( 1 ) 3 6 ( 1 ) 1 = 1 f ( 10 ) = 8 ( 10 ) 3 6 ( 10 ) 1 = 7939 f ( 0 ) + f ( 1 ) + f ( 10 ) = 1 + 1 + 7939 = 7939 f(0)=8(0)^3-6(0)-1=-1\\ f(1)=8(1)^3-6(1)-1=1\\ f(10)=8(10)^3-6(10)-1=7939\\ f(0)+f(1)+f(10)=-1+1+7939=\boxed{7939}

Sal Gard
Jun 21, 2016

The eighth degree chebyshev polynomial has factors 8 x 3 6 x 1 8x^3-6x-1 and 8 x 3 + 6 x 1 8x^3+6x-1 . The roots of 8 x 3 6 x 1 8x^3-6x-1 are the given. Then we sum the values to get 7939 7939 .

your solution is wrong.the ans must be 7939

fahim saikat - 4 years, 11 months ago

Log in to reply

You're right. I was my silly mistake. You should get credit.

Sal Gard - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...