f ( x ) = 8 ( x − cos 9 π ) ( x − cos 9 5 π ) ( x − cos 9 7 π ) Find f ( 0 ) + f ( 1 ) + f ( 1 0 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let a = cos 9 π , b = cos 9 5 π and c = cos 9 7 π . Then, we have:
f ( x ) = 8 ( x − cos 9 π ) ( x − cos 9 5 π ) ( x − cos 9 7 π ) = 8 ( x − a ) ( x − b ) ( x − c ) = 8 ( x 3 − ( a + b + c ) x 2 + ( a b + b c + c a ) x − a b c ) See Note. = 8 ( x 3 − ( 0 ) x 2 + ( − 4 3 ) x − 8 1 ) = 8 x 3 − 6 x − 1
⟹ f ( 0 ) + f ( 1 ) + f ( 1 0 ) = − 1 + 1 + 8 0 0 0 − 6 0 − 1 = 7 9 3 9
Note:
cos 9 π + cos 9 3 π + cos 9 5 π + cos 9 7 π ⟹ a + 2 1 + b + c ⟹ a + b + c = 2 1 = 2 1 = 0
⟹ a 2 + b 2 + c 2 cos 2 9 π + cos 2 9 5 π + cos 2 9 7 π ⟹ a b + b c + c a = − 2 ( a b + b c + c a ) = 2 1 ( cos 9 2 π + cos 9 1 0 π + cos 9 1 4 π + 3 ) = 2 1 ( − cos 9 7 π − cos 9 1 π − cos 9 5 π + 3 ) = 2 1 ( − 0 + 3 ) = 2 3 = − 4 3
a b c ⟹ a b c = cos 9 π cos 9 5 π cos 9 7 π = cos 9 π cos 9 4 π cos 9 2 π = sin 9 π sin 9 π cos 9 π cos 9 2 π cos 9 4 π = 2 sin 9 π sin 9 2 π cos 9 2 π cos 9 4 π = 4 sin 9 π sin 9 4 π cos 9 4 π = 8 sin 9 π sin 9 8 π = 8 sin 9 π sin 9 π = 8 1
Sir could you please explain how in the note the sum is 1/2
f ( x ) = 8 ( x − cos 9 π ) ( x − cos 9 5 π ) ( x − cos 9 7 π ) = 8 ( x − cos 2 0 ∘ ) ( x − cos 1 0 0 ∘ ) ( x − cos 1 4 0 ∘ ) = 8 ( x 2 − x cos 2 0 ∘ − x cos 1 0 0 ∘ + cos 2 0 ∘ cos 1 0 0 ∘ ) ( x − cos 1 4 0 ∘ ) = 8 ( x 3 − x 2 cos 2 0 ∘ − x 2 cos 1 0 0 ∘ + x cos 2 0 ∘ cos 1 0 0 ∘ − x 2 cos 1 4 0 ∘ + x cos 2 0 ∘ cos 1 4 0 ∘ + x cos 1 0 0 ∘ cos 1 4 0 ∘ − cos 2 0 ∘ cos 1 0 0 ∘ cos 1 4 0 ∘ ) = 8 x 3 − 8 ( cos 2 0 ∘ + cos 1 0 0 ∘ + cos 1 4 0 ∘ ) x 2 + 8 ( cos 2 0 ∘ cos 1 0 0 ∘ + cos 2 0 ∘ cos 1 4 0 ∘ + cos 1 0 0 ∘ cos 1 4 0 ∘ ) x − 8 cos 2 0 ∘ cos 1 0 0 ∘ cos 1 4 0 ∘
From here on, I will only use these tools:
We now proceed to determine the values of the coefficients:
8 ( cos 2 0 ∘ + cos 1 0 0 ∘ + cos 1 4 0 ∘ ) = 8 ( cos ( 6 0 ∘ − 4 0 ∘ ) + cos ( 6 0 ∘ + 4 0 ∘ ) + cos 1 4 0 ∘ ) = 8 ( 2 cos 6 0 ∘ cos 4 0 ∘ + cos 1 4 0 ∘ ) = 8 ( 2 ( 2 1 ) cos 4 0 ∘ + ( − cos ( 1 8 0 ∘ − 1 4 0 ∘ ) ) ) = 8 ( cos 4 0 ∘ − cos 4 0 ∘ ) = 8 ( 0 ) = 0
8 ( cos 2 0 ∘ cos 1 0 0 ∘ + cos 2 0 ∘ cos 1 4 0 ∘ + cos 1 0 0 ∘ cos 1 4 0 ∘ ) = 4 ( 2 cos 2 0 ∘ cos 1 0 0 ∘ + 2 cos 2 0 ∘ cos 1 4 0 ∘ + 2 cos 1 0 0 ∘ cos 1 4 0 ∘ ) = 4 ( cos 8 0 ∘ + cos 1 2 0 ∘ + cos 1 2 0 ∘ + cos 1 6 0 ∘ + cos 4 0 ∘ + cos 2 4 0 ∘ ) = 4 ( cos ( 6 0 ∘ + 2 0 ∘ ) − cos 6 0 ∘ − cos 6 0 ∘ + cos 1 6 0 ∘ + cos ( 6 0 ∘ − 2 0 ∘ ) − cos 6 0 ∘ ) = 4 ( 2 cos 6 0 ∘ cos 2 0 ∘ + cos 1 6 0 ∘ − 3 cos 6 0 ∘ ) = 4 ( 2 ( 2 1 ) cos 2 0 ∘ − cos 2 0 ∘ − 3 ( 2 1 ) ) = 4 ( cos 2 0 ∘ − cos 2 0 ∘ − 2 3 ) = 4 ( − 2 3 ) = − 6
8 cos 2 0 ∘ cos 1 0 0 ∘ cos 1 4 0 ∘ = 4 ( 2 cos 2 0 ∘ cos 1 0 0 ∘ ) cos 1 4 0 ∘ = 4 cos 1 4 0 ∘ ( cos 8 0 ∘ + cos 1 2 0 ∘ ) = 2 ( 2 cos 8 0 ∘ cos 1 4 0 ∘ + 2 cos 1 4 0 ∘ ( − cos 6 0 ∘ ) ) = 2 ( cos 6 0 ∘ + cos 2 2 0 ∘ − 2 cos 1 4 0 ∘ ( 2 1 ) ) = 2 ( 2 1 − cos 4 0 ∘ − ( − cos 4 0 ∘ ) ) = 1 + 2 ( − cos 4 0 ∘ + cos 4 0 ∘ ) = 1
Substitute the found values into f ( x ) :
f ( x ) = 8 x 3 − 8 ( cos 2 0 ∘ + cos 1 0 0 ∘ + cos 1 4 0 ∘ ) x 2 + 8 ( cos 2 0 ∘ cos 1 0 0 ∘ + cos 2 0 ∘ cos 1 4 0 ∘ + cos 1 0 0 ∘ cos 1 4 0 ∘ ) x − 8 cos 2 0 ∘ cos 1 0 0 ∘ cos 1 4 0 ∘ = 8 x 3 − 0 x 2 + ( − 6 ) x − 1 = 8 x 3 − 6 x − 1
f ( 0 ) = 8 ( 0 ) 3 − 6 ( 0 ) − 1 = − 1 f ( 1 ) = 8 ( 1 ) 3 − 6 ( 1 ) − 1 = 1 f ( 1 0 ) = 8 ( 1 0 ) 3 − 6 ( 1 0 ) − 1 = 7 9 3 9 f ( 0 ) + f ( 1 ) + f ( 1 0 ) = − 1 + 1 + 7 9 3 9 = 7 9 3 9
The eighth degree chebyshev polynomial has factors 8 x 3 − 6 x − 1 and 8 x 3 + 6 x − 1 . The roots of 8 x 3 − 6 x − 1 are the given. Then we sum the values to get 7 9 3 9 .
your solution is wrong.the ans must be 7939
Log in to reply
You're right. I was my silly mistake. You should get credit.
Problem Loading...
Note Loading...
Set Loading...
Let w 1 = e π i / 9 , w 2 = e 3 π i / 9 , w 3 = e 5 π i / 9 , and w 4 = e 7 π i / 9 . Then the numbers w 1 , w 2 , w 3 , w 4 , w 1 , w 2 , w 3 , w 4 , and -1 are the roots of the polynomial x 9 + 1 . Therefore, x 9 + 1 = ( x + 1 ) ( x 8 − x 7 + x 6 − x 5 + x 4 − x 3 + x 2 − x + 1 ) = = ( x + 1 ) ( x − w 1 ) ( x − w 1 ) ( x − w 2 ) ( x − w 2 ) ( x − w 3 ) ( x − w 3 ) ( x − w 4 ) ( x − w 4 ) . Dividing both sides by x + 1 and taking into consideration that ( x − w j ) ( x − w j ) = x 2 − 2 cos 9 ( 2 j − 1 ) π x + 1 , for j ∈ { 1 , 2 , 3 , 4 } , we obtain that x 8 − x 7 + x 6 − x 5 + x 4 − x 3 + x 2 − x + 1 = = j = 1 ∏ 4 ( x 2 − 2 cos 9 ( 2 j − 1 ) π x + 1 ) . Making the coefficients of x in this equality equal, and using that cos ( 3 π / 9 ) = cos ( π / 3 ) = 2 1 , we get the equality cos ( 9 π ) + cos ( 9 5 π ) + cos ( 9 7 π ) = 0 . ( ∗ )
In a similar way, making the coefficients of x 2 and x 4 equal, respectively, and considering again that cos ( 3 π / 9 ) = 2 1 , we obtain the equalities
cos ( 9 π ) cos ( 9 5 π ) + cos ( 9 7 π ) cos ( 9 5 π ) + cos ( 9 π ) cos ( 9 7 π ) = − 4 3 ( ∗ ∗ ) and cos ( 9 π ) cos ( 9 5 π ) cos ( 9 7 π ) = 8 1 . ( ∗ ∗ ∗ ) Now, using ( ∗ ) , ( ∗ ∗ ) and ( ∗ ∗ ∗ ) and Vieta's Formulas, we get that f ( x ) = 8 x 3 − 6 x − 1 . Therefore, f ( 0 ) + f ( 1 ) + f ( 1 0 ) = 7 9 3 9 .