The value of s i n 1 4 π × s i n 1 4 3 π × s i n 1 4 5 π × s i n 1 4 7 π × s i n 1 4 9 π × s i n 1 4 1 1 π × s i n 1 4 1 3 π is 0 . a 1 a 2 a 3 a 4 . . . . . . a n where 0 ≤ a 1 , a 2 , a 3 , . . . . . , a n ≤ 9 & a 1 , a 2 , a 3 , . . . . . , a n ∈ I n t e g e r s .
Find i = 1 ∑ n a i
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Shouldn't it be cos(6π÷14) in the conversion step
Log in to reply
Let the required product be P . Consider α = e i 2 π / 1 4 and β = e i 2 π / 7 .
Now, α k 1 − α k ∣ ∣ 1 − α k ∣ ∣ k = 0 ∏ 6 ∣ ∣ 1 − α 2 k + 1 ∣ ∣ = cos 1 4 2 k π + i sin 1 4 2 k π = 1 − cos 1 4 2 k π − i sin 1 4 2 k π = 2 sin 1 4 k π ( cos 1 4 k π − i sin 1 4 k π ) = 2 sin 1 4 k π = 2 7 P ( 1 )
As we know, k = 1 ∏ 1 3 ∣ ∣ x − α k ∣ ∣ = ∣ ∣ ∣ ∣ ∣ k = 0 ∑ 1 3 x k ∣ ∣ ∣ ∣ ∣ . Hence k = 1 ∏ 1 3 ∣ ∣ 1 − α k ∣ ∣ ( k = 0 ∏ 6 ∣ ∣ 1 − α 2 k + 1 ∣ ∣ ) ( k = 1 ∏ 6 ∣ ∣ 1 − α 2 k ∣ ∣ ) = 1 4 = 1 4
But, k = 1 ∏ 6 ∣ ∣ 1 − α 2 k ∣ ∣ = k = 1 ∏ 6 ∣ ∣ 1 − β k ∣ ∣ ∴ k = 0 ∏ 6 ∣ ∣ 1 − α 2 k + 1 ∣ ∣ = 7 = 7 1 4 = 2 ( 2 )
And finally, from ( 1 ) and ( 2 ) , P = 2 7 2 = 6 4 1
Problem Loading...
Note Loading...
Set Loading...
Let the required product be α . Now,
Using The Property sin θ = sin ( π − θ ) ,
We convert The given Problem into,
α = ( sin 1 4 π ⋅ sin 1 4 3 π ⋅ sin 1 4 5 π ) 2
Then Using The Property sin ( 2 π − θ ) = cos θ
We Get ,
α = ( cos 1 4 2 π ⋅ cos 1 4 4 π ⋅ cos 1 4 8 π ) 2
Then We Know That
∏ j = 0 k − 1 cos ( 2 j x ) = 2 k sin ( x ) sin ( 2 k x )
And Here x = 1 4 2 π .
Using That We Get
α = ( 2 3 ⋅ sin ( 1 4 2 π ) sin ( 2 3 ⋅ ( 1 4 2 π ) ) ) 2
Also We Know That sin 1 4 2 π = sin 1 4 1 6 π
The Expression Reduces To
α = ( 2 3 1 ) 2 .
So We Get α = 6 4 1 .
Proof of ∏ j = 0 k − 1 cos ( 2 j x ) = 2 k sin ( x ) sin ( 2 k x )
∏ j = 0 k − 1 cos 2 j x = 2 k sin x sin 2 k x
j = 0 ∏ k − 1 cos 2 j x = cos x j = 1 ∏ k − 1 cos 2 j x = 2 sin x 2 sin x cos x j = 1 ∏ k − 1 cos 2 j x = 2 sin x sin 2 x cos 2 x j = 2 ∏ k − 1 cos 2 j x = 2 2 sin x sin 4 x cos 4 x j = 3 ∏ k − 1 cos 2 j x ⋮ ⋮
Doing this repeatedly, we get j = 0 ∏ k − 1 cos 2 j x = 2 k sin x sin 2 k x