What if answer comes an irrational number

Level 2

The value of s i n π 14 × s i n 3 π 14 × s i n 5 π 14 × s i n 7 π 14 × s i n 9 π 14 × s i n 11 π 14 × s i n 13 π 14 sin\frac{\pi}{14} \times sin\frac{3\pi}{14} \times sin\frac{5\pi}{14} \times sin\frac{7\pi}{14} \times sin\frac{9\pi}{14} \times sin\frac{11\pi}{14} \times sin\frac{13\pi}{14} is 0. a 1 a 2 a 3 a 4 . . . . . . a n 0.a_1a_2a_3a_4......a_n where 0 a 1 , a 2 , a 3 , . . . . . , a n 9 0 \leq a_1,a_2,a_3,.....,a_n \leq 9 & a 1 , a 2 , a 3 , . . . . . , a n I n t e g e r s a_1,a_2,a_3,.....,a_n \in Integers .

Find i = 1 n a i \displaystyle \sum_{i=1}^n a_i


Try more Trigonometry Problems


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vraj Mehta
Dec 9, 2014

Let the required product be α \alpha . Now,

Using The Property sin θ = sin ( π θ ) \sin { \theta } =\sin { \left( \pi -\theta \right) } ,

We convert The given Problem into,

α \alpha = ( sin π 14 sin 3 π 14 sin 5 π 14 ) 2 { \left( \sin { \frac { \pi }{ 14 } } \cdot \sin { \frac { 3\pi }{ 14 } } \cdot \sin { \frac { 5\pi }{ 14 } } \right) }^{ 2 }

Then Using The Property sin ( π 2 θ ) = cos θ \sin { \left( \frac { \pi }{ 2 } -\theta \right) } =\cos { \theta }

We Get ,

α \alpha = ( cos 2 π 14 cos 4 π 14 cos 8 π 14 ) 2 { \left( \cos { \frac { 2\pi }{ 14 } } \cdot \cos { \frac { 4\pi }{ 14 } } \cdot \cos { \frac { 8\pi }{ 14 } } \right) }^{ 2 }

Then We Know That

j = 0 k 1 cos ( 2 j x ) = sin ( 2 k x ) 2 k sin ( x ) \prod_{j=0}^{k-1}\cos(2^j x)=\frac{\sin(2^k x)}{2^k\sin(x)}

And Here x = 2 π 14 x = \frac { 2\pi }{ 14 } .

Using That We Get

α \alpha = ( sin ( 2 3 ( 2 π 14 ) ) 2 3 sin ( 2 π 14 ) ) 2 { \left( \frac { \sin { \left( { 2 }^{ 3 }\cdot \left( \frac { 2\pi }{ 14 } \right) \right) } }{ { 2 }^{ 3 }\cdot \sin { \left( \frac { 2\pi }{ 14 } \right) } } \right) }^{ 2 }

Also We Know That sin 2 π 14 = sin 16 π 14 \sin { \frac { 2\pi }{ 14 } } =\sin { \frac { 16\pi }{ 14 } }

The Expression Reduces To

α \alpha = ( 1 2 3 ) 2 { \left( \frac { 1 }{ { 2 }^{ 3 } } \right) }^{ 2 } .

So We Get α \alpha = 1 64 \frac { 1 }{ 64 } .

Proof of j = 0 k 1 cos ( 2 j x ) = sin ( 2 k x ) 2 k sin ( x ) \prod_{j=0}^{k-1}\cos(2^j x)=\frac{\sin(2^k x)}{2^k\sin(x)}

j = 0 k 1 cos 2 j x = sin 2 k x 2 k sin x \prod_{j=0}^{k-1}\cos{2^jx}=\dfrac{\sin{2^kx}}{2^k\sin{x}}

j = 0 k 1 cos 2 j x = cos x j = 1 k 1 cos 2 j x = 2 sin x cos x 2 sin x j = 1 k 1 cos 2 j x = sin 2 x cos 2 x 2 sin x j = 2 k 1 cos 2 j x = sin 4 x cos 4 x 2 2 sin x j = 3 k 1 cos 2 j x \begin{aligned}\prod_{j=0}^{k-1}\cos{2^jx}&=\cos{x}\prod_{j=1}^{k-1}\cos{2^jx}\\&=\dfrac{2\sin{x}\cos{x}}{2\sin{x}}\prod_{j=1}^{k-1}\cos{2^jx}\\&=\dfrac{\sin{2x}\cos{2x}}{2\sin{x}}\prod_{j=2}^{k-1}\cos{2^jx}\\&=\dfrac{\sin{4x}\cos{4x}}{2^2\sin{x}}\prod_{j=3}^{k-1}\cos{2^jx}\\& \vdots\\ &\vdots\end{aligned}

Doing this repeatedly, we get j = 0 k 1 cos 2 j x = sin 2 k x 2 k sin x \prod_{j=0}^{k-1}\cos{2^jx}=\dfrac{\sin{2^kx}}{2^k\sin{x}}

Shouldn't it be cos(6π÷14) in the conversion step

Aayush Patni - 6 years, 4 months ago

Log in to reply

I Adjusted All The Values..

Considering cos ( π α ) = cos α \space \cos(\pi-\alpha) = - \cos \alpha

Vraj Mehta - 6 years, 3 months ago
Pratik Shastri
Dec 9, 2014

Let the required product be P P . Consider α = e i 2 π / 14 \alpha=e^{i2\pi/14} and β = e i 2 π / 7 \beta=e^{i2\pi/7} .

Now, α k = cos 2 k π 14 + i sin 2 k π 14 1 α k = 1 cos 2 k π 14 i sin 2 k π 14 = 2 sin k π 14 ( cos k π 14 i sin k π 14 ) 1 α k = 2 sin k π 14 k = 0 6 1 α 2 k + 1 = 2 7 P ( 1 ) \begin{aligned}\alpha^k&=\cos{\dfrac{2k\pi}{14}}+i\sin{\dfrac{2k\pi}{14}}\\ 1-\alpha^k&=1-\cos{\dfrac{2k\pi}{14}}-i\sin{\dfrac{2k\pi}{14}}\\ &=2\sin{\dfrac{k\pi}{14}}\left(\cos {\dfrac{k\pi}{14}}-i\sin{\dfrac{k\pi}{14}}\right)\\ \left|1-\alpha^k\right|&=2\sin{\dfrac{k\pi}{14}}\\ \prod_{k=0}^{6}\left|1-\alpha^{2k+1}\right|&=2^7P \ \ \ \ \ \ \ \ (1)\end{aligned}


As we know, k = 1 13 x α k = k = 0 13 x k \displaystyle\prod_{k=1}^{13}\left|x-\alpha^k\right|=\left|\displaystyle\sum_{k=0}^{13}x^k\right| . Hence k = 1 13 1 α k = 14 ( k = 0 6 1 α 2 k + 1 ) ( k = 1 6 1 α 2 k ) = 14 \begin{aligned}\prod_{k=1}^{13}\left|1-\alpha^k\right|&=14\\ \left(\prod_{k=0}^{6}\left|1-\alpha^{2k+1}\right|\right)\left(\prod_{k=1}^{6}\left|1-\alpha^{2k}\right|\right)&=14\end{aligned}

But, k = 1 6 1 α 2 k = k = 1 6 1 β k = 7 k = 0 6 1 α 2 k + 1 = 14 7 = 2 ( 2 ) \begin{aligned}\displaystyle\prod_{k=1}^{6}\left|1-\alpha^{2k}\right|=\displaystyle\prod_{k=1}^{6}\left|1-\beta^{k}\right|&=7\\ \therefore \ \ \prod_{k=0}^{6}\left|1-\alpha^{2k+1}\right|&=\dfrac{14}{7}=2 \ \ \ \ \ \ \ \ (2) \end{aligned}

And finally, from ( 1 ) (1) and ( 2 ) (2) , P = 2 2 7 = 1 64 P=\dfrac{2}{2^7}=\boxed{\dfrac{1}{64}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...