What if i just root them !

Algebra Level 2

It is well know that e π > π e e^{\pi} > \pi^{e} . Is it true that e π > π e ? \large{{\color{#3D99F6}\sqrt{e}}^{{\color{#D61F06}\sqrt\pi} }> {\color{#D61F06}\sqrt{\pi}}^{{\color{#3D99F6}\sqrt e}}}\,?

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Mendrin
Aug 21, 2018

The value of x 1 x x^{\frac{1}{x}} is at maximum where x = e x=e . For any two values a , b a,b , the one closest to e e will have a greater value. π \sqrt{\pi} is closer to e e than e \sqrt{e} , so the right side has the larger value than the left.

Anirudh Sreekumar
Aug 21, 2018

Consider e x for x ( 0 , 1 ) e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + x n n ! e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + x n n ! < 1 + x + x 2 ! + x 3 ! + x 4 ! + x n ! ( 1 ) x n < x for n > 1 as x ( 0 , 1 ) 1 + x + x 2 ! + x 3 ! + x 4 ! + x n ! < 1 + x + x 2 + x 4 + x 8 + x 2 ( n 1 ) ( 2 ) n ! 2 ( n 1 ) for n 1 1 + x + x 2 ! + x 3 ! + x 4 ! + x n ! < 1 + x + x 2 1 1 2 Sum of G.P 1 + x + x 2 ! + x 3 ! + x 4 ! + x n ! < 1 + 2 x ( 3 ) From ( 1 ) , ( 2 ) , ( 3 ) we have, e x < 1 + 2 x for x ( 0 , 1 ) ( 4 ) Let, t = 1 2 ( π e 1 ) 0 < t < 1 e t < 1 + 2 t From ( 4 ) e 1 2 ( π e 1 ) < 1 + 2 × 1 2 ( π e 1 ) e 1 2 ( π e 1 ) < π e e π e e < π e e π e < π e π < π e For x > y > 1 , x a > y a , a > 0 Thus the given statement is FALSE. \begin{aligned}\text{Consider } e^x \text{ for } x\in(0,1)\\ e^x&=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\dfrac{x^4}{4!} \cdots +\dfrac{x^n}{n!}\cdots\\ e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\dfrac{x^4}{4!} \cdots +\dfrac{x^n}{n!}\cdots&<1+x+\dfrac{x}{2!}+\dfrac{x}{3!}+\dfrac{x}{4!} \cdots +\dfrac{x}{n!}\cdots\hspace{4mm}\color{#3D99F6}\small (1) \hspace{4mm} x^n<x \text{ for } n>1 \text{ as } x\in(0,1)\\ 1+x+\dfrac{x}{2!}+\dfrac{x}{3!}+\dfrac{x}{4!} \cdots +\dfrac{x}{n!}\cdots&<1+x+\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{8} \cdots +\dfrac{x}{2^{(n-1)}}\cdots\hspace{4mm}\color{#3D99F6}\small (2)\hspace{4mm} n!\geq2^{(n-1)} \text{ for } n\geq1\\ 1+x+\dfrac{x}{2!}+\dfrac{x}{3!}+\dfrac{x}{4!} \cdots +\dfrac{x}{n!}\cdots&<1+x+\dfrac{\dfrac{x}{2}}{1-\dfrac{1}{2}}\hspace{4mm}\color{#3D99F6}\small \text{Sum of G.P}\\ 1+x+\dfrac{x}{2!}+\dfrac{x}{3!}+\dfrac{x}{4!} \cdots +\dfrac{x}{n!}\cdots&<1+2x \hspace{4mm}\color{#3D99F6}\small (3)\\\\ \text{From } \color{#3D99F6}(1)\color{#333333},\color{#3D99F6}(2)\color{#333333},\color{#3D99F6}(3)\color{#333333}\text{ we have,}\\\\ e^x&<1+2x \hspace{7mm}\text{ for } x\in(0,1)\hspace{4mm}\color{#3D99F6}\small (4)\\\\ \text{Let, } t&=\dfrac{1}{2} \left(\sqrt{\dfrac{\pi}{e}}-1\right)\\ 0&<t<1\\ e^t&<1+2t \hspace{4mm}\color{#3D99F6}\small \text{From} (4)\\\\ \implies e^{\small\tfrac{1}{2} \left(\sqrt{\tfrac{\pi}{e}}-1\right)}&<1+2\times\dfrac{1}{2} \left(\sqrt{\dfrac{\pi}{e}}-1\right)\\ \implies e^{\small\tfrac{1}{2} \left(\sqrt{\tfrac{\pi}{e}}-1\right)}&<\sqrt{\dfrac{\pi}{e}}\\ \implies \dfrac{{\sqrt{e}}^{\small\sqrt{\tfrac{\pi}{e}}}}{\sqrt{e}}&<\sqrt{\dfrac{\pi}{e}}\\ \implies {\sqrt{e}}^{\small\sqrt{\tfrac{\pi}{e}}}&<\sqrt{\pi}\\ \implies {\sqrt{e}}^{\sqrt{\pi}}&<{\sqrt{\pi}}^{\sqrt{e}}\hspace{4mm}\color{#3D99F6}\small \text{For }x>y>1 , \hspace{2mm} x^a>y^a, a>0\\\\ \text{Thus the given statement is }&\color{#D61F06}\text{ FALSE.}\end{aligned}

Great Solution. I got matched a bit with you. Thank you for the solution. :)

Naren Bhandari - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...