Consider triangle , such that:
are in an arithmetic progression.
Find to 4 decimal places, where is the orthocenter and is the area of triangle .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
T a n A = T a n 4 5 = 1 . L e t T a n B = 1 + d , a n d T a n C = 1 + 2 d . B u t i n a △ T a n A + T a n B + T a n C = T a n A ∗ T a n B ∗ T a n C . ∴ 1 + ( 1 + d ) + ( 1 + 2 d ) = 1 ∗ ( 1 + d ) ∗ ( 1 + 2 d ) ⟹ 3 ( 1 + d ) = ( 1 + d ) ( 1 + 2 d ) . I f 1 + d = 0 . T a n B = 0 , a n d B = 0 . B u t a n a n g l e o f n o n − d e g e n e r a t e d Δ c a n n o t b e 0 . S o 1 + d = 0 . ∴ 3 = 1 + 2 d , ⟹ d = 1 . S o A = T a n − 1 1 , B = T a n − 1 2 C = T a n − 1 3 . . . . . . . . . . . ( 1 ) F r o m t h e F i g . : − S i n A = 2 1 , S i n B = 5 2 , C o s C = 1 0 1 . . . . . . . . . . ( 2 ) S o b y S i n L a w s u b s t i t u t i o n f r o m ( 2 ) a n d s i m p l i f y i n g c b = S i n C S i n B = 3 2 2 . . . . . . . . . . . . ( 3 ) C D = b C o s C , C H = C o s D C H C D = S i n B b C o s C . . . . . . . . . . . ( 4 ) Δ = 2 1 ∗ b c S i n A . . . . . . . . . . . ( 5 ) ∴ B y ( 4 , 5 ) Δ C H 2 = S i n 2 B ∗ 2 1 ∗ b ∗ c ∗ S i n A ( b C o s C ) 2 = c b ∗ S i n 2 B ∗ S i n A 2 ∗ C o s 2 C = B y ( 2 ) a n d ( 3 ) 3 2 2 ∗ 5 4 ∗ 2 1 1 0 2 ∴ Δ C H 2 = 0 . 3 3 3 3 3 3 .
Above is the copy of my solution of the same problem posted before.