What If I take a 2 + b 2 + c 2 = 11 a^2+b^2+c^2=11 out

Geometry Level pending

Consider triangle A B C ABC , such that:

  1. A = 4 5 \angle A = 45^\circ

  2. tan A , tan B , tan C \tan A, \tan B, \tan C are in an arithmetic progression.

Find C H 2 \dfrac{{CH}^2}{\triangle} to 4 decimal places, where H H is the orthocenter and \triangle is the area of triangle A B C ABC .

Inspiration


The answer is 0.3333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

T a n A = T a n 45 = 1. L e t T a n B = 1 + d , a n d T a n C = 1 + 2 d . B u t i n a T a n A + T a n B + T a n C = T a n A T a n B T a n C . 1 + ( 1 + d ) + ( 1 + 2 d ) = 1 ( 1 + d ) ( 1 + 2 d ) 3 ( 1 + d ) = ( 1 + d ) ( 1 + 2 d ) . I f 1 + d = 0. T a n B = 0 , a n d B = 0. B u t a n a n g l e o f n o n d e g e n e r a t e d Δ c a n n o t b e 0. S o 1 + d 0. 3 = 1 + 2 d , d = 1. S o A = T a n 1 1 , B = T a n 1 2 C = T a n 1 3. . . . . . . . . . . ( 1 ) F r o m t h e F i g . : S i n A = 1 2 , S i n B = 2 5 , C o s C = 1 10 . . . . . . . . . . ( 2 ) S o b y S i n L a w s u b s t i t u t i o n f r o m ( 2 ) a n d s i m p l i f y i n g b c = S i n B S i n C = 2 2 3 . . . . . . . . . . . . ( 3 ) C D = b C o s C , C H = C D C o s D C H = b C o s C S i n B . . . . . . . . . . . ( 4 ) Δ = 1 2 b c S i n A . . . . . . . . . . . ( 5 ) B y ( 4 , 5 ) C H 2 Δ = ( b C o s C ) 2 S i n 2 B 1 2 b c S i n A = b c 2 C o s 2 C S i n 2 B S i n A = B y ( 2 ) a n d ( 3 ) 2 2 3 2 10 4 5 1 2 C H 2 Δ = 0.333333. TanA=Tan45=1.\ \ \ Let\ \ TanB=1+d,\ \ \ and\ \ \ TanC=1+2d.\\ But\ in\ a\ \triangle\ TanA+TanB+TanC=TanA*TanB*TanC.\\ \therefore\ \ 1+(1+d)+(1+2d) = 1*(1+d)*(1+2d)\\ \implies\ 3(1+d)=(1+d)(1+2d).\\ If\ 1+d=0.\ TanB=0,\ and \ B=0.\ But\ an\ angle\ of\ non-degenerated\ \Delta\ can\ not\ be\ 0. \\ So\ 1+d \neq 0.\ \ \therefore\ \ 3=1+2d,\ \ \implies\ d=1.\\ So\ A=Tan^{-1}1,\ \ \ B=Tan^{-1}2\ \ \ C=Tan^{-1}3.\color{#3D99F6}{..........(1)}\\ From\ the\ Fig.:-\ \ SinA=\dfrac 1 {\sqrt2},\ \ \ SinB=\dfrac 2{\sqrt5},\ \ \ CosC=\dfrac 1 {\sqrt{10}}\color{#3D99F6}{..........(2)}\\ So\ by\ Sin\ Law\ \ substitution\ from \ (2)\ and\ simplifying\ \ \ \ \ \dfrac b c=\dfrac {SinB}{SinC}=\dfrac{2\sqrt2} 3..\color{#3D99F6}{..........(3)}\\ CD=bCosC,\ \ \ \ CH=\dfrac{CD}{CosDCH}=\dfrac{bCosC}{SinB}.\color{#3D99F6}{..........(4)}\\ \Delta=\frac 1 2 *bcSinA.\color{#3D99F6}{..........(5)}\\ \therefore\ \ By\ (4,5)\ \dfrac{CH^2}{\Delta}= \dfrac{ (bCosC)^2}{ Sin^2 B*\frac 1 2 *b*c*SinA}\\ = \dfrac b c* \dfrac{ 2*Cos^2C}{ Sin^2 B*SinA}\\ =By\ (2)\ and(3)\ \dfrac{ 2\sqrt2} 3 *\dfrac{\dfrac 2 {10} } {\dfrac 4 5 *\dfrac 1 {\sqrt2} } \ \ \ \ \ \ \ \therefore\ \dfrac{CH^2}{\Delta}=\Large\ \ \color{#D61F06}{0.333333}.\\\ \ \ \\

Above is the copy of my solution of the same problem posted before.

too complex there is a simpler method

anyways good solution! u are the inspiration

A Former Brilliant Member - 4 years, 6 months ago

Log in to reply

Thanks for your comment.

After finding the angles, their trig ratios, I found ratio of b:c.
Next found the required CH from two triangles. Found the area and the required ratio.
Values are then submitted to get the result.
Where have I gone complex ?
I am asking this to improve my solution.
Please post the simpler method.
Thanks.


Niranjan Khanderia - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...