What if the variables were not integers?

Calculus Level 4

{ a + 3 b + 2 a b = 12.965 5 b + 2 c + 9 b c = 111.375 4 c + 4 a + 10 a c = 73.37 \begin{cases} a + 3 b + 2 ab = 12.965 \\ 5 b + 2 c + 9 bc = 111.375 \\ 4 c + 4 a + 10 ac = 73.37 \end{cases}

The above nonlinear system of equations in a a , b b , and c c has a unique solution with a > 0 a \gt 0 , b > 0 b \gt 0 , and c > 0 c \gt 0 . Find this solution numerically, and as your answer enter the value of 10 ( a + b + c ) 10(a + b + c) .

Hint : You can use the multivariate Newton-Raphson method. It is very fast and efficient..


Inspiration .


The answer is 78.8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 12, 2016

From { a + 3 b + 2 a b = 12.965 b n = 12.965 a n 1 3 + 2 a n 1 5 b + 2 c + 9 b c = 111.375 c n = 111.375 5 b n 1 2 + 9 b n 1 4 c + 4 a + 10 a c = 73.37 a n = 73.37 4 c n 1 4 + 10 c n 1 \begin{cases} a + 3 b + 2 ab = 12.965 & \implies b_n = \dfrac {12.965-a_{n-1}}{3+2a_{n-1}} \\ 5 b + 2 c + 9 bc = 111.375 & \implies c_n = \dfrac {111.375-5b_{n-1}}{2+9b_{n-1}} \\ 4 c + 4 a + 10 ac = 73.37 & \implies a_n = \dfrac {73.37-4c_{n-1}}{4+10c_{n-1}} \end{cases}

Using the simple iteration of assuming a 0 = 1 a_0 = 1 , then compute b 1 b_1 , c 1 c_1 and a 1 a_1 with the above formulas, then b 2 b_2 , c 2 c_2 and a 2 a_2 and so on, with an Excel spreadsheet, the results are:

{ a = 1.13 b = 2.25 c = 4.5 10 ( a + b + c ) = 78.8 \begin{cases} a=1.13 \\ b = 2.25 \\ c = 4.5 \end{cases} \implies 10(a+b+c) = \boxed{78.8}

Hosam Hajjir
Apr 6, 2017

Using the multi-variable Newton-Raphson method, we define our vector function as follows:

f = [ a + 3 b + 2 a b 12.965 5 b + 2 c + 9 b c 111.375 4 c + 4 a + 10 a c 73.37 ] f = \begin{bmatrix} a + 3 b + 2 a b - 12.965 \\ 5 b + 2 c + 9 bc - 111.375 \\ 4c + 4a + 10 a c - 73.37 \end{bmatrix}

Next, we derive the jacobian matrix,

J = [ 1 + 2 b 3 + 2 a 0 0 5 + 9 c 2 + 9 b 4 + 10 c 0 4 + 10 a ] J = \begin{bmatrix} 1 + 2 b && 3 + 2 a && 0 \\ 0 && 5 + 9 c && 2 + 9 b \\ 4 + 10 c && 0 && 4 + 10 a \end{bmatrix}

Starting with an initial guess x 0 = ( a 0 , b 0 , c 0 ) x_0 = (a_0, b_0, c_0) , we apply the Newton-Raphson recursion,

x i + 1 = x i J i 1 f i x_{i+1} = x_i - {J_i}^{-1} f_i

Here's a listing of the successive approximations of the solution as implemented using MS-Excel,

The initial guess is x 0 = ( 5 , 5 , 5 ) x_0 = (5, 5, 5) .

Pi Han Goh
Aug 14, 2016

The trick to solving the system of equations is to apply the concept of Simon's favorite factoring trick (SFFT) .

For simplicity sake, let D , E , F D,E,F denote the values of 12.965 , 111.375 , 73.37 12.965, 111.375, 73.37 , respectively. We have

{ a + 3 b + 2 a b = D 5 b + 2 c + 9 b c = E 4 c + 4 a + 10 a c = F { 2 a + 6 b + 4 a b = 2 D 5 b + 2 c + 9 b c = E 40 c + 40 a + 100 a c = 10 F { 2 a + 6 b + 4 a b + 3 = 2 D + 3 5 b + 2 c + 9 b c + 10 9 = E + 10 9 40 c + 40 a + 100 a c + 16 = 10 F + 16 { ( 2 a + 3 ) ( 2 b + 1 ) = 2 D + 3 ( 3 b + 2 3 ) ( 3 c + 5 3 ) = E + 10 9 ( 10 a + 4 ) ( 10 c + 4 ) = 10 F + 16 { ( 2 a + 3 ) ( 2 b + 1 ) = 2 D + 3 ( ) ( 9 b + 2 ) ( 9 c + 5 ) = 9 E + 10 ( ) ( 10 a + 4 ) ( 10 c + 4 ) = 10 F + 16 ( ) \begin{cases} a + 3b + 2ab = D \\ 5b + 2c + 9bc = E \\ 4c + 4a + 10ac = F \end{cases} \quad \Leftrightarrow \quad \begin{cases} 2a + 6b + 4ab =2D \\ 5b + 2c + 9bc = E \\ 40c + 40a + 100ac = 10F \end{cases} \quad \Leftrightarrow \quad \begin{cases} 2a + 6b + 4ab + 3 =2D + 3 \\ 5b + 2c + 9bc + \dfrac{10}9 = E + \dfrac{10}9 \\ 40c + 40a + 100ac + 16 = 10F+16 \end{cases} \\ \Leftrightarrow \quad \begin{cases} (2a + 3)(2b+1) =2D + 3 \\ \left(3b + \dfrac23\right) \left( 3c + \dfrac53\right)= E + \dfrac{10}9 \\ (10a+4)(10c+4) = 10F+16 \end{cases} \quad \Leftrightarrow \quad \begin{cases} (2a + 3)(2b+1) =2D + 3 \qquad\qquad (\bigstar) \\ (9b+2)(9c+5)= 9E + 10 \qquad\qquad (\bigstar\bigstar) \\ (10a+4)(10c+4) = 10F+16 \qquad (\bigstar\bigstar\bigstar) \end{cases}

From here, it should be relatively straightforward (but still very tedious) to solve this system of equations to obtain the only positive triplets ( a , b , c ) = ( 1.13 , 2.25 , 4.5 ) (a,b,c) = (1.13,2.25, 4.5) .

how did you obtain (a,b,c) from the last step

cool math - 4 years, 2 months ago

Log in to reply

From ( ) (\bigstar) , set a a as the subject, then substitute it it into ( ) (\bigstar\bigstar\bigstar) . You can now solve for b b and c c , then a a .

Pi Han Goh - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...