What is a a =?

Algebra Level 2

If log a ( 10 ) + log a ( 1 0 2 ) + log a ( 1 0 3 ) + + log a ( 1 0 10 ) = 110 \log_a(10)+\log_a(10^2)+ \log_a(10^3)+ \dots+ \log_a(10^{10})= 110

Then what is the value of a = ? a=?

20 1 0 1 / 2 + 1 / 3 + 1 / 4 + + 1 / 10 10^{1/2+1/3+1/4+\dots+1/10} 10 10 \sqrt{10} e e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Zach Abueg
Jul 6, 2017

log a ( 10 ) + log a ( 1 0 2 ) + log a ( 1 0 3 ) + + log a ( 1 0 10 ) = 110 log a ( 10 × 1 0 2 × × 1 0 10 ) = 110 log a 1 0 55 = 110 a 110 = 1 0 55 a = 1 0 55 110 = 10 \displaystyle \begin{aligned} \log_a \left(10\right) + \log_a \left(10^2\right) + \log_a \left(10^3\right) + \cdots + \log_a \left(10^{10}\right) & = 110 \\ \log_a \left(10 \times 10^2 \times \cdots \times 10^{10}\right) & = 110 \\ \log_a 10^{55} & = 110 \\ \implies a^{110} & = 10^{55} \\ \implies a & = 10^{\frac{55}{110}} \\ & = \boxed{\sqrt{10}} \end{aligned}

Thank you. Nice and neat, I would add brackets to the second line so the log function belongs to all tens.

Hana Wehbi - 3 years, 11 months ago

Log in to reply

Thanks! I've edited my solution.

Zach Abueg - 3 years, 11 months ago

Log in to reply

Thank you again.

Hana Wehbi - 3 years, 11 months ago

log a ( 10 ) + log a ( 1 0 2 ) + log a ( 1 0 3 ) + + log a ( 1 0 10 ) = 110 log a ( 10 ) + 2 log a ( 10 ) + 3 log a ( 10 ) + + 10 log a ( 10 ) = 110 log a ( 10 ) n = 1 10 n = 110 10 ( 10 + 1 ) 2 log a ( 10 ) = 110 55 log a ( 10 ) = 110 log a ( 10 ) = 2 a 2 = 10 a = 10 \begin{aligned} \log_a (10) + \log_a (10^2) + \log_a (10^3) + \cdots + \log_a (10^{10}) & = 110 \\ \log_a (10) + 2\log_a (10) + 3\log_a (10) + \cdots +10 \log_a (10) & = 110 \\ \log_a (10) \sum_{n=1}^{10} n & = 110 \\ \frac {10(10+1)}2 \log_a (10) & = 110 \\ 55 \log_a (10) & = 110 \\ \log_a (10) & = 2 \\ \implies a^2 & = 10 \\ a & = \boxed{\sqrt{10}} \end{aligned}

Thank you. That was logical and neat.

Hana Wehbi - 3 years, 11 months ago
Ravneet Singh
Jul 6, 2017

By properties of logarithms, we have log a ( X Y ) = Y log a ( X ) \log_a(X^Y) = Y\log_a(X)

so log a ( 10 ) + log a ( 1 0 2 ) + log a ( 1 0 3 ) + + log a ( 1 0 10 ) = 110 \log_a(10)+\log_a(10^2)+ \log_a(10^3)+ \dots+ \log_a(10^{10}) = 110

log a ( 10 ) + 2 log a ( 10 ) + 3 log a ( 10 ) + + 10 log a ( 10 ) = 110 \implies \log_a(10) + 2\log_a(10) + 3\log_a(10) + \cdots + 10\log_a(10) = 110

55 log a ( 10 ) = 110 55 \log_a(10) = 110

log a ( 10 ) = 2 \log_a(10) = 2

a 2 = 10 \implies a^2 = 10

a = 10 a = \boxed{\sqrt{10}} , \quad a 10 a \ne -\sqrt{10} as base of logarithm cannot be negative.

Thank you Nice, logical and elegant.

Hana Wehbi - 3 years, 11 months ago
Tommy Li
Jul 6, 2017

log a ( 10 ) + log a ( 1 0 2 ) + log a ( 1 0 3 ) + + log a ( 1 0 10 ) = 110 \log_a(10)+\log_a(10^2)+ \log_a(10^3)+ \dots+ \log_a(10^{10})= 110 log 10 1 0 55 log 10 a = 110 \frac{\log_{10}{10^{55}}}{\log_{10}{a}} =110 a = 1 0 55 110 = 10 a = 10^{\frac{55}{110}} = \sqrt{10}

Thank you. Nice and simple.

Hana Wehbi - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...