If lo g a ( 1 0 ) + lo g a ( 1 0 2 ) + lo g a ( 1 0 3 ) + ⋯ + lo g a ( 1 0 1 0 ) = 1 1 0
Then what is the value of a = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thank you. Nice and neat, I would add brackets to the second line so the log function belongs to all tens.
Log in to reply
Thanks! I've edited my solution.
lo g a ( 1 0 ) + lo g a ( 1 0 2 ) + lo g a ( 1 0 3 ) + ⋯ + lo g a ( 1 0 1 0 ) lo g a ( 1 0 ) + 2 lo g a ( 1 0 ) + 3 lo g a ( 1 0 ) + ⋯ + 1 0 lo g a ( 1 0 ) lo g a ( 1 0 ) n = 1 ∑ 1 0 n 2 1 0 ( 1 0 + 1 ) lo g a ( 1 0 ) 5 5 lo g a ( 1 0 ) lo g a ( 1 0 ) ⟹ a 2 a = 1 1 0 = 1 1 0 = 1 1 0 = 1 1 0 = 1 1 0 = 2 = 1 0 = 1 0
Thank you. That was logical and neat.
By properties of logarithms, we have lo g a ( X Y ) = Y lo g a ( X )
so lo g a ( 1 0 ) + lo g a ( 1 0 2 ) + lo g a ( 1 0 3 ) + ⋯ + lo g a ( 1 0 1 0 ) = 1 1 0
⟹ lo g a ( 1 0 ) + 2 lo g a ( 1 0 ) + 3 lo g a ( 1 0 ) + ⋯ + 1 0 lo g a ( 1 0 ) = 1 1 0
5 5 lo g a ( 1 0 ) = 1 1 0
lo g a ( 1 0 ) = 2
⟹ a 2 = 1 0
a = 1 0 , a = − 1 0 as base of logarithm cannot be negative.
Thank you Nice, logical and elegant.
lo g a ( 1 0 ) + lo g a ( 1 0 2 ) + lo g a ( 1 0 3 ) + ⋯ + lo g a ( 1 0 1 0 ) = 1 1 0 lo g 1 0 a lo g 1 0 1 0 5 5 = 1 1 0 a = 1 0 1 1 0 5 5 = 1 0
Thank you. Nice and simple.
Problem Loading...
Note Loading...
Set Loading...
lo g a ( 1 0 ) + lo g a ( 1 0 2 ) + lo g a ( 1 0 3 ) + ⋯ + lo g a ( 1 0 1 0 ) lo g a ( 1 0 × 1 0 2 × ⋯ × 1 0 1 0 ) lo g a 1 0 5 5 ⟹ a 1 1 0 ⟹ a = 1 1 0 = 1 1 0 = 1 1 0 = 1 0 5 5 = 1 0 1 1 0 5 5 = 1 0