What is a haitch?

Calculus Level 1

d d x sin x = cos x d d x cos x = sin x d d x sinh x = cosh x d d x cosh x = sinh x \large{\begin{array} {l c l } \frac{d}{dx} \sin x &= &\cos x \\ \frac{d}{dx} \cos x &= &\sin x \\ \frac{d}{dx} \sinh x &= &\cosh x \\ \frac{d}{dx} \cosh x &= &\sinh x \end{array}}

One of the above equations is wrong, which one?

d d x sin x = cos x \frac{d}{dx} \sin x = \cos x d d x cosh x = sinh x \frac{d}{dx} \cosh x = \sinh x d d x sinh x = cosh x \frac{d}{dx} \sinh x = \cosh x d d x cos x = sin x \frac{d}{dx} \cos x = \sin x

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
Aug 11, 2016

d d x cos x = sin x \dfrac{d}{dx} \cos x = -\sin x , so this \color{#3D99F6}{\boxed{\text{this}}} is wrong.

Got a proof?

Pi Han Goh - 4 years, 10 months ago

Log in to reply

We can use the definition of derivative to prove this.

d d x cos ( x ) = lim h 0 cos ( x + h ) cos ( h ) h = lim h 0 cos ( x ) cos ( h ) 1 2 sin ( x ) sin ( h ) h = ( cos ( x ) ) lim h 0 sin 2 ( h / 2 ) h / 2 sin ( x ) sin ( h ) h = ( cos ( x ) ) ( lim u = ( h / 2 ) 0 sin ( u ) u ) ( lim u = ( h / 2 ) 0 sin ( u ) ) sin ( x ) lim h 0 sin ( h ) h = ( cos ( x ) ) 1 0 sin ( x ) 1 = ( sin ( x ) ) \begin{aligned}\frac{\mathrm d}{\mathrm dx}\cos(x)&=\lim_{h\to 0}\frac{\cos(x+h)-\cos(h)}{h}\\&=\lim_{h\to 0}\cos(x)\frac{\cos(h)-1}{2}-\sin(x)\frac{\sin(h)}{h}\\&=(-\cos(x))\lim_{h\to 0}\frac{\sin^2(h/2)}{h/2}-\sin(x)\frac{\sin(h)}{h}\\&=(-\cos(x))\left(\lim_{u=(h/2)\to 0}\frac{\sin(u)}{u}\right)\left(\lim_{u=(h/2)\to 0}\sin(u)\right)-\sin(x)\lim_{h\to 0}\frac{\sin(h)}{h}\\&=(-\cos(x))\cdot 1\cdot 0-\sin(x)\cdot 1=(-\sin(x))\end{aligned}

Here, the result lim x 0 sin ( x ) x = 1 \lim\limits_{x\to 0}\frac{\sin(x)}{x}=1 that we used has a very well-known elegant geometric proof using the squeeze theorem. The trigonometric formulas used also have well-known trivial proofs.

Prasun Biswas - 4 years, 10 months ago

Log in to reply

ONE THE FULL!!!!!

Pi Han Goh - 4 years, 10 months ago

Hmm, yeah, thats pretty simple.

d d x cos x = d d x sin ( π 2 x ) = cos ( π 2 x ) ( 0 1 ) = cos ( π 2 x ) = sin x \begin{aligned} \dfrac{d}{dx} \cos x & = \dfrac{d}{dx} \sin\left(\dfrac{\pi}{2} - x\right)\\ \\ & = \cos\left(\dfrac{\pi}{2} - x\right)\left(0-1\right)\\ \\ & = -\cos\left(\dfrac{\pi}{2} - x\right)\\ \\ & = \color{#3D99F6}{\boxed{-\sin x}} \end{aligned}

Ashish Menon - 4 years, 10 months ago

Log in to reply

Your working shows that we need to know that d d x sin x = cos x \frac d{dx} \sin x = \cos x .

That begs the question: If you want to prove that d d x cos x = sin x \frac d{dx} \cos x= - \sin x , then you need to prove that d d x sin x = cos x \frac d{dx} \sin x = \cos x as well. Now, can you prove that d d x sin x = cos x \frac d{dx} \sin x = \cos x ?

Pi Han Goh - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...