What Is The Student ID Of Nur Uddin Vai?

Algebra Level 2

Md Nur Uddin is a student of Mathematics Discipline Of Khulna University. Now, you have to find his student ID by solving the following system of linear equations:

3 x + 2 y 6 z = 6 5 x + 7 y 5 z = 6 x + 4 y 2 z = 8. \begin{aligned} -3x+2y-6z &=6 \\ 5x+7y-5z &=6 \\ x+4y-2z &=8. \end{aligned}

If the solution satisfies x + y = z , x+y=z, what is the value of x + y , x+y, or equivalently z ? z?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

3 x + 2 y 6 z = 6 -3x+2y-6z=6 ( 1 ) \color{#3D99F6}(1)

5 x + 7 y 5 z = 6 5x+7y-5z=6 ( 2 ) \color{#3D99F6}(2)

x + 4 y 2 z = 8 x+4y-2z=8 ( 3 ) \color{#3D99F6}(3)

Multiply ( 1 ) \color{#3D99F6}(1) by 5 5 and multiply ( 2 ) \color{#3D99F6}(2) by 3 3 then add the results: \implies 31 y 45 z = 48 31y-45z=48 ( 4 ) \color{#3D99F6}(4)

Multiply ( 3 ) \color{#3D99F6}(3) by 5 -5 then add the result to ( 2 ) \color{#3D99F6}(2) : \implies 13 y + 5 z = 34 -13y+5z=-34 ( 5 ) \color{#3D99F6}(5)

Multiply ( 4 ) \color{#3D99F6}(4) by 13 13 and multiply ( 5 ) \color{#3D99F6}(5) by 31 31 then add the results: \implies 430 z = 430 -430z=430 \implies z = 1 \boxed{z=1}

It should be 430z=430

Saksham Jain - 3 years, 5 months ago

Adithi Gowda
Jul 22, 2016

x+y=z

1. Substitute (x+y) for z into two of the equations

-3x+2y- 6z=6

-3x+2y- 6(x+y)=6

-3x+2y-6x-6y=6

-9x-4y=6

x+4y-2z=8

x+4y-2(x+y)=8

x+4y-2x-2y=8

-x+2y=8

2. Next, we use elimination.

-9x-4y=6

-x+2y=8

Multiply the second equation by 2 to get the y terms to cancel.

2(-x-2y)=2(8)

-2x+4y=16

-9x-4y=6

-2x+4y=16

Y terms cancel

-9x=6

-2x=16

-9x-2x=6+16

-11x=22

x = -2

3. Substitute -2 for x to solve for y

-x+2y=8

-(-2)+2y=8

2+2y=8

2y=6

y=3

x+y=z

-2+3=z

1=z

Zahid Hussain
Jun 17, 2019

Multiply second equation by 3 and third by 2 you will get 15x + 21y - 15z = 18
2x + 8y - 4z = -16
Subtract second from first. You will get 13x + 13y - 11z = 2
13 (x + y) - 11z = 2
13z - 11z = 2, 2z = 2, z = 1



The real trick here was to manipulate the two equations in such a way that x and y coefficients are equal and that again is no rocket science but pure maths. If we look at the coefficients we see that in first equation y is 2 more than x and in second it is 3 more. We cannot get them equal by adding them so we have to subtract one from other. Now comes the intelligent part. So if we multiply first equation with 3 then y would be 6 more than x. And when we reverse the signs and multiply the second one by 2, x will be 6 more than y. Now if we add together the coefficients will be equal.

Oon Han
Dec 9, 2018

{ 3 x + 2 y 6 z = 6 5 x + 7 y 5 z = 6 x + 4 y 2 z = 8 \begin{cases} -3x + 2y -6z = 6 \\ 5x + 7y - 5z = 6 \\ x + 4y - 2z = 8 \end{cases} Solving: 15 x + 10 y 30 z = 30 -15x + 10y - 30z = 30 15 x + 21 y 15 z = 18 15x + 21y - 15z = 18 31 y 45 z = 48 31y - 45z = 48 5 x 20 y + 10 z = 40 -5x - 20y + 10z = -40 13 y + 5 z = 34 -13y + 5z = -34 403 y 585 z = 624 403y - 585z = 624 403 y + 155 z = 1054 403y + 155z = 1054 430 z = 430 -430z = 430 z = 1 z = -1

3 x + 2 y 6 z = 6 -3x+2y-6z=6 ( 1 ) \color{#20A900}(1)

5 x + 7 y 5 z = 6 5x+7y-5z=6 ( 2 ) \color{#20A900}(2)

x + 4 y 2 z = 8 x+4y-2z=8 ( 3 ) \color{#20A900}(3)

Multiply ( 1 ) \color{#20A900}(1) by 5 5 and ( 2 ) \color{#20A900}(2) by 3 3 , then add the results to eliminate x x

5 ( 3 x + 2 y 6 z = 6 ) 5(-3x+2y-6z=6) \implies 15 x + 10 y 30 z = 30 -15x+10y-30z=30 ( 4 ) \color{#20A900}(4)

3 ( 5 x + 7 y 5 z = 6 ) 3(5x+7y-5z=6) \implies 15 x + 21 y 15 z = 18 15x+21y-15z=18 ( 5 ) \color{#20A900}(5)

Add the results

( 4 ) \color{#20A900}(4) + + ( 5 ) \color{#20A900}(5) \implies 31 y 45 z = 48 31y-45z=48 ( 6 ) \color{#20A900}(6)

Now, we must eliminate x x in ( 2 ) \color{#20A900}(2) and ( 3 ) \color{#20A900}(3) . Multiply ( 3 ) \color{#20A900}(3) by 5 -5 then add to ( 2 ) \color{#20A900}(2) to eliminate x x .

5 ( x + 4 y 2 z = 8 ) -5(x+4y-2z=8) \implies 5 x 20 y + 10 z = 40 -5x-20y+10z=-40 ( 7 ) \color{#20A900}(7)

( 2 ) \color{#20A900}(2) + + ( 7 ) \color{#20A900}(7) \implies 13 y + 5 z = 34 -13y+5z=-34 ( 8 ) \color{#20A900}(8)

Multiply ( 8 ) \color{#20A900}(8) by 9 9 then add to ( 6 ) \color{#20A900}(6) to eliminate z z and solve for y y .

9 ( 13 y + 5 z = 34 ) 9(-13y+5z=-34) \implies 117 y + 45 z = 306 -117y+45z=-306 ( 10 ) \color{#20A900}(10)

( 6 ) \color{#20A900}(6) + + ( 10 ) \color{#20A900}(10) \implies 86 y = 258 -86y=-258 \implies y = 3 \boxed{\color{#D61F06}\large y=3}

Solve for z z in ( 8 ) \color{#20A900}(8) by substituting 3 3 for y y .

13 ( 3 ) + 5 z = 34 -13(3)+5z=-34 \implies 39 + 5 z = 34 -39+5z=-34 \implies z = 1 \boxed{\color{#D61F06}\large z=1}

Solve for x x in ( 1 ) \color{#20A900}(1) or ( 2 ) \color{#20A900}(2) or ( 3 ) \color{#20A900}(3) . In here, I used ( 3 ) \color{#20A900}(3) because there is no coefficient of x x

x + 4 ( 3 ) 2 ( 1 ) = 8 x+4(3)-2(1)=8 \implies x = 2 \boxed{\large\color{#D61F06}\large x=-2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...